【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言,采用经典差分进化算法(DE)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。

目录

  • 往期优质资源
  • [1. 适用场景](#1. 适用场景)
  • [2. 代码调整](#2. 代码调整)
  • [3. 求解结果](#3. 求解结果)
  • [4. 代码片段](#4. 代码片段)
  • 参考

往期优质资源

经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 问题与算法,原创不宜,有偿获取。

VRP问题 GA ACO ALNS DE DPSO QDPSO TS SA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地

2. 代码调整

CVRP问题相比,SDVRP问题允许客户需求大于车辆容量。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆对客户进行服务,也就是需要对客户的需求进行拆分。关于如何进行拆分一般有两种方式:

  • 先验拆分策略:提前制定策略对客户的需求(尤其是大于车辆容量的客户需求)进行分解,将SDVRP问题转化为CVRP问题
  • 过程拆分策略:在车辆服务过程中对客户需求进行动态拆分

本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m~20~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i m∈Z+∪{0}∣0.20Qm<=Di }
  • m~10~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ m∈Z+∪{0}∣0.10Qm<=Di−0.20Qm20 }
  • m~5~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} m∈Z+∪{0}∣0.05Qm<=Di−0.20Qm20−0.10Qm10 }
  • m~1~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} m∈Z+∪{0}∣0.01Qm<=Di−0.20Qm20−0.10Qm10−0.05Qm5 }

(2)25/10/5/1拆分规则

  • m~25~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i m∈Z+∪{0}∣0.25Qm<=Di }
  • m~10~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ m∈Z+∪{0}∣0.10Qm<=Di−0.25Qm25 }
  • m~5~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} m∈Z+∪{0}∣0.05Qm<=Di−0.25Qm25−0.10Qm10 }
  • m~1~ =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} m∈Z+∪{0}∣0.01Qm<=Di−0.25Qm25−0.10Qm10−0.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

3. 求解结果

(1)收敛曲线

(2)车辆路径

4. 代码片段

(1)数据结构

python 复制代码
# 数据结构:解
class Sol():
    def __init__(self):
        self.node_no_seq = None # 节点id有序排列
        self.obj = None # 目标函数
        self.fitness = None  # 适应度
        self.route_list = None # 车辆路径集合
        self.route_distance_list = None  # 车辆路径长度集合
# 数据结构:网络节点
class Node():
    def __init__(self):
        self.id = 0 # 节点id
        self.x_coord = 0 # 节点平面横坐标
        self.y_coord = 0 # 节点平面纵坐标
        self.demand = 0 # 节点需求
# 数据结构:全局参数
class Model():
    def __init__(self):
        self.best_sol = None # 全局最优解
        self.demand_id_list = [] # 需求节点集合
        self.demand_dict = {}
        self.sol_list = [] # 解的集合
        self.depot = None # 车场节点
        self.number_of_demands = 0 # 需求节点数量
        self.vehicle_cap = 0 # 车辆最大容量
        self.distance_matrix = {} # 节点距离矩阵
        self.demand_id_list_ = [] # 经先验需求分割后的节点集合
        self.demand_dict_ = {} # 需求分割后的节点需求集合
        self.distance_matrix_ = {}  # 原始节点id间的距离矩阵
        self.mapping = {}  # 需求分割前后的节点对应关系
        self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)
        self.popsize = 100 # 种群规模
        self.Cr=0.5 # 差分交叉概率
        self.F=0.5 # 差分变异概率

(2)距离矩阵

python 复制代码
# 初始化参数
def cal_distance_matrix(model):
    for i in model.demand_id_list:
        for j in model.demand_id_list:
            d=math.sqrt((model.demand_dict[i].x_coord-model.demand_dict[j].x_coord)**2+
                        (model.demand_dict[i].y_coord-model.demand_dict[j].y_coord)**2)
            model.distance_matrix[i,j]=max(d,0.0001) if i != j else d
        dist = math.sqrt((model.demand_dict[i].x_coord - model.depot.x_coord) ** 2 + (model.demand_dict[i].y_coord - model.depot.y_coord) ** 2)
        model.distance_matrix[i, model.depot.id] = dist
        model.distance_matrix[model.depot.id, i] = dist

(3)邻域

python 复制代码
#差分变异;变异策略:DE/rand/1/bin
def muSol(model,v1):
    x1=model.sol_list[v1].node_no_seq
    while True:
        v2=random.randint(0,model.popsize-1)
        if v2!=v1:
            break
    while True:
        v3=random.randint(0,model.popsize-1)
        if v3!=v2 and v3!=v1:
            break
    x2=model.sol_list[v2].node_no_seq
    x3=model.sol_list[v3].node_no_seq
    mu_x=[min(int(x1[i]+model.F*(x2[i]-x3[i])),model.number_of_demands-1) for i in range(model.number_of_demands) ]
    return mu_x
#差分交叉
def crossSol(model,vx,vy):
    cro_x=[]
    for i in range(model.number_of_demands):
        if random.random()<model.Cr:
            cro_x.append(vy[i])
        else:
            cro_x.append(vx[i])
    cro_x=adjustRoutes(cro_x,model)
    return cro_x

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

相关推荐
q567315235 分钟前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀6 分钟前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆7 分钟前
数据采集之selenium模拟登录
python·selenium·测试工具
白榆maple13 分钟前
(蓝桥杯C/C++)——基础算法(下)
算法
JSU_曾是此间年少17 分钟前
数据结构——线性表与链表
数据结构·c++·算法
狂奔solar41 分钟前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE43 分钟前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习
此生只爱蛋1 小时前
【手撕排序2】快速排序
c语言·c++·算法·排序算法
咕咕吖2 小时前
对称二叉树(力扣101)
算法·leetcode·职场和发展