机器人路径规划:基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(提供Python代码)

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。它可以找到从一个起始节点到其他所有节点的最短路径。

一、算法介绍

Dijkstra算法采用贪心策略,通过逐步扩展已知最短路径集合来逐步确定最短路径。它使用一个距离数组来记录从起始节点到其他节点的当前最短距离,并通过不断更新距离数组来逐步确定最短路径。

二、算法描述

  1. 创建一个距离数组dist[],用于记录起始节点到其他节点的当前最短距离。初始化dist[],将起始节点的距离设为0,其他节点的距离设为无穷大。

  2. 创建一个集合visited[],用于记录已经确定最短路径的节点。

  3. 重复以下步骤,直到visited[]包含所有节点:

a. 从未访问的节点中选择一个距离最小的节点u,将其加入visited[]。

b. 对于节点u的所有邻居节点v,更新其距离数组dist[]:

  • 如果通过节点u可以获得更短的路径,则更新dist[v]为新的最短距离。
  1. 最终,dist[]数组中记录了起始节点到其他所有节点的最短距离。

三、算法流程

  1. 初始化dist[]数组和visited[]集合。

  2. 将起始节点的距离设为0。

  3. 重复以下步骤,直到visited[]包含所有节点:

a. 从未访问的节点中选择一个距离最小的节点u。

b. 将节点u加入visited[]。

c. 对于节点u的所有邻居节点v,更新其距离数组dist[]:

  • 如果通过节点u可以获得更短的路径,则更新dist[v]为新的最短距离。
  1. 返回dist[]数组作为最短路径结果。

四、部分代码

复制代码
import matplotlib.pyplot as plt
import math

show_animation = True


class Dijkstra:

    def __init__(self, ox, oy, resolution, robot_radius):
        """
        Initialize map for a star planning

        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        resolution: grid resolution [m]
        rr: robot radius[m]
        """

        self.min_x = None
        self.min_y = None
        self.max_x = None
        self.max_y = None
        self.x_width = None
        self.y_width = None
        self.obstacle_map = None

        self.resolution = resolution
        self.robot_radius = robot_radius
        self.calc_obstacle_map(ox, oy)
        self.motion = self.get_motion_model()

    class Node:
        def __init__(self, x, y, cost, parent_index):
            self.x = x  # index of grid
            self.y = y  # index of grid
            self.cost = cost
            self.parent_index = parent_index  # index of previous Node

        def __str__(self):
            return str(self.x) + "," + str(self.y) + "," + str(
                self.cost) + "," + str(self.parent_index)

五、部分结果

六、完整Python代码

见下方联系方式

相关推荐
fantasy_arch3 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
No0d1es4 小时前
电子学会青少年软件编程(C/C++)5级等级考试真题试卷(2024年6月)
c语言·c++·算法·青少年编程·电子学会·五级
WBluuue4 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3355 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩5 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室5 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
大阳1236 小时前
线程(基本概念和相关命令)
开发语言·数据结构·经验分享·算法·线程·学习经验
小艳加油6 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
weixin_307779137 小时前
VS Code配置MinGW64编译GNU 科学库 (GSL)
开发语言·c++·vscode·算法
学行库小秘7 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归