机器人路径规划:基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(提供Python代码)

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。它可以找到从一个起始节点到其他所有节点的最短路径。

一、算法介绍

Dijkstra算法采用贪心策略,通过逐步扩展已知最短路径集合来逐步确定最短路径。它使用一个距离数组来记录从起始节点到其他节点的当前最短距离,并通过不断更新距离数组来逐步确定最短路径。

二、算法描述

  1. 创建一个距离数组dist[],用于记录起始节点到其他节点的当前最短距离。初始化dist[],将起始节点的距离设为0,其他节点的距离设为无穷大。

  2. 创建一个集合visited[],用于记录已经确定最短路径的节点。

  3. 重复以下步骤,直到visited[]包含所有节点:

a. 从未访问的节点中选择一个距离最小的节点u,将其加入visited[]。

b. 对于节点u的所有邻居节点v,更新其距离数组dist[]:

  • 如果通过节点u可以获得更短的路径,则更新dist[v]为新的最短距离。
  1. 最终,dist[]数组中记录了起始节点到其他所有节点的最短距离。

三、算法流程

  1. 初始化dist[]数组和visited[]集合。

  2. 将起始节点的距离设为0。

  3. 重复以下步骤,直到visited[]包含所有节点:

a. 从未访问的节点中选择一个距离最小的节点u。

b. 将节点u加入visited[]。

c. 对于节点u的所有邻居节点v,更新其距离数组dist[]:

  • 如果通过节点u可以获得更短的路径,则更新dist[v]为新的最短距离。
  1. 返回dist[]数组作为最短路径结果。

四、部分代码

复制代码
import matplotlib.pyplot as plt
import math

show_animation = True


class Dijkstra:

    def __init__(self, ox, oy, resolution, robot_radius):
        """
        Initialize map for a star planning

        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        resolution: grid resolution [m]
        rr: robot radius[m]
        """

        self.min_x = None
        self.min_y = None
        self.max_x = None
        self.max_y = None
        self.x_width = None
        self.y_width = None
        self.obstacle_map = None

        self.resolution = resolution
        self.robot_radius = robot_radius
        self.calc_obstacle_map(ox, oy)
        self.motion = self.get_motion_model()

    class Node:
        def __init__(self, x, y, cost, parent_index):
            self.x = x  # index of grid
            self.y = y  # index of grid
            self.cost = cost
            self.parent_index = parent_index  # index of previous Node

        def __str__(self):
            return str(self.x) + "," + str(self.y) + "," + str(
                self.cost) + "," + str(self.parent_index)

五、部分结果

六、完整Python代码

见下方联系方式

相关推荐
放羊郎13 分钟前
具身智能机器人开源陪跑计划(机器人实战落地)
机器人·开源·具身智能·项目陪跑·从零开发
(・Д・)ノ19 分钟前
python打卡day22
python
?abc!34 分钟前
缓存(5):常见 缓存数据淘汰算法/缓存清空策略
java·算法·缓存
BioRunYiXue36 分钟前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
achene_ql1 小时前
深入探索 RKNN 模型转换之旅
python·目标检测·rk3588·模型部署·rk3566
@十八子德月生2 小时前
8天Python从入门到精通【itheima】-1~5
大数据·开发语言·python·学习
jiunian_cn2 小时前
【c++】异常详解
java·开发语言·数据结构·c++·算法·visual studio
每天一个秃顶小技巧2 小时前
02.Golang 切片(slice)源码分析(一、定义与基础操作实现)
开发语言·后端·python·golang
工藤新一¹3 小时前
蓝桥杯算法题 -蛇形矩阵(方向向量)
c++·算法·矩阵·蓝桥杯·方向向量
Levin__NLP_CV_AIGC3 小时前
解决pip安装PyPI默认源速度慢
算法·pip