PSO-ELM,粒子群优化算法优化ELM极限学习机数据回归预测(多输入单输出)-MATLAB实现

粒子群优化算法(Particle Swarm Optimization, PSO)结合极限学习机(Extreme Learning Machine, ELM)进行数据回归预测是一种常见的机器学习方法。ELM作为一种单隐层前馈神经网络,具有快速训练和良好的泛化能力。而PSO则是一种优化算法,用于寻找神经网络中的最优参数。将二者结合可以提高模型的性能和泛化能力。

下面是使用PSO优化ELM的一般步骤:

  1. 准备数据集:首先,准备好用于训练和测试的数据集。确保数据集包含输入特征和对应的目标值。

  2. 初始化粒子群:PSO算法需要初始化一组粒子,每个粒子代表一个潜在的解(即神经网络的参数)。这些参数可以是随机生成的,也可以根据经验选择。

  3. 初始化ELM网络:在每个粒子处,初始化ELM网络的权重和偏置。这些权重和偏置是PSO算法需要优化的参数。

  4. 计算适应度:对于每个粒子,使用ELM网络在训练数据上进行训练,并计算其在验证数据上的适应度。适应度可以是预测误差的某个度量,如均方误差(Mean Squared Error, MSE)或平均绝对误差(Mean Absolute Error, MAE)。

  5. 更新粒子的速度和位置:根据PSO算法的更新规则,更新每个粒子的速度和位置。通常情况下,速度和位置的更新涉及到个体最优和全局最优的位置。

  6. 重复迭代:重复步骤4和步骤5,直到达到预定的迭代次数或达到收敛条件。

  7. 选择最优解:在迭代结束后,选择具有最小适应度的粒子作为最优解。这些粒子对应的ELM网络参数即为所求。

模型结果如下:

代码获取方式如下:

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZycmpps
相关推荐
yumgpkpm1 小时前
银行智能数据平台在Cloudera CDH6\CDP 7\CMP 7平台下的具体使用配置流程
大数据·hive·hadoop·数据挖掘·flink·spark·cloudera
程序员-King.5 小时前
day158—回溯—全排列(LeetCode-46)
算法·leetcode·深度优先·回溯·递归
KmjJgWeb6 小时前
工业零件检测与分类——基于YOLOv5的改进模型 Dysample 实现
yolo·分类·数据挖掘
月挽清风6 小时前
代码随想录第七天:
数据结构·c++·算法
TTGGGFF6 小时前
控制系统建模仿真(一):掌握控制系统设计的 MAD 流程与 MATLAB 基础运算
开发语言·matlab
小O的算法实验室6 小时前
2026年AEI SCI1区TOP,基于改进 IRRT*-D* 算法的森林火灾救援场景下直升机轨迹规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小郭团队7 小时前
2_1_七段式SVPWM (经典算法)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·硬件架构·arm·dsp开发
充值修改昵称7 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch7 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
70asunflower8 小时前
基于锚点(聚类)的LLM微调
机器学习·数据挖掘·聚类