PSO-ELM,粒子群优化算法优化ELM极限学习机数据回归预测(多输入单输出)-MATLAB实现

粒子群优化算法(Particle Swarm Optimization, PSO)结合极限学习机(Extreme Learning Machine, ELM)进行数据回归预测是一种常见的机器学习方法。ELM作为一种单隐层前馈神经网络,具有快速训练和良好的泛化能力。而PSO则是一种优化算法,用于寻找神经网络中的最优参数。将二者结合可以提高模型的性能和泛化能力。

下面是使用PSO优化ELM的一般步骤:

  1. 准备数据集:首先,准备好用于训练和测试的数据集。确保数据集包含输入特征和对应的目标值。

  2. 初始化粒子群:PSO算法需要初始化一组粒子,每个粒子代表一个潜在的解(即神经网络的参数)。这些参数可以是随机生成的,也可以根据经验选择。

  3. 初始化ELM网络:在每个粒子处,初始化ELM网络的权重和偏置。这些权重和偏置是PSO算法需要优化的参数。

  4. 计算适应度:对于每个粒子,使用ELM网络在训练数据上进行训练,并计算其在验证数据上的适应度。适应度可以是预测误差的某个度量,如均方误差(Mean Squared Error, MSE)或平均绝对误差(Mean Absolute Error, MAE)。

  5. 更新粒子的速度和位置:根据PSO算法的更新规则,更新每个粒子的速度和位置。通常情况下,速度和位置的更新涉及到个体最优和全局最优的位置。

  6. 重复迭代:重复步骤4和步骤5,直到达到预定的迭代次数或达到收敛条件。

  7. 选择最优解:在迭代结束后,选择具有最小适应度的粒子作为最优解。这些粒子对应的ELM网络参数即为所求。

模型结果如下:

代码获取方式如下:

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZycmpps
相关推荐
二进制person2 小时前
Java SE--方法的使用
java·开发语言·算法
麻雀无能为力3 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
OneQ6663 小时前
C++讲解---创建日期类
开发语言·c++·算法
时序之心3 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
JoJo_Way3 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield3 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战5 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689765 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju6 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手6 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理