27 OpenCV 凸包

文章目录

概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。

正式定义:

包含点集合S中所有点的最小凸多边形称为凸包

Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0
  • 从p0开始极坐标扫描,依次添加p1....pn(排序顺序是根据极坐标的角度大小,逆时针方向)
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包, 反之如果导致一个右转向(顺时针方向)删除该点从凸包中

convexHull 凸包函数

c 复制代码
convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是vector<Point>则自动忽略

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, src_gray, dst; // 定义原始图像、灰度图像和结果图像
int threshold_value = 100; // 初始阈值设为100
int threshold_max = 255; // 最大阈值为255
const char* output_win = "convex hull demo"; // 定义输出窗口名称
RNG rng(12345); // 随机数生成器

// 回调函数声明
void Threshold_Callback(int, void*);

int main(int argc, char** argv) {
    src = imread("D:/vcprojects/images/hand.png"); // 读取图像
    if (!src.data) {
        printf("could not load image...\n");
        return -1;
    }
    
    const char* input_win = "input image";
    namedWindow(input_win); // 创建输入图像窗口
    namedWindow(output_win); // 创建输出图像窗口
    
    const char* trackbar_label = "Threshold : "; // 创建滑动条标题

    cvtColor(src, src_gray, CV_BGR2GRAY); // 将彩色图像转换为灰度图像
    blur(src_gray, src_gray, Size(3, 3), Point(-1, -1), BORDER_DEFAULT); // 对灰度图像进行模糊处理
    imshow(input_win, src_gray); // 在输入窗口中显示灰度图像

    createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, Threshold_Callback); // 创建阈值滑动条
    Threshold_Callback(0, 0); // 初始化回调函数

    waitKey(0); // 等待按键
    return 0;
}

void Threshold_Callback(int, void*) {
    Mat bin_output; // 二值化输出图像
    vector<vector<Point>> contours; // 存储轮廓点集
    vector<Vec4i> hierachy; // 轮廓层级关系
    
    threshold(src_gray, bin_output, threshold_value, threshold_max, THRESH_BINARY); // 对灰度图像进行阈值处理
    findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0)); // 查找图像中的轮廓

    vector<vector<Point>> convexs(contours.size()); // 存储凸包结果
    for (size_t i = 0; i < contours.size(); i++) {
        convexHull(contours[i], convexs[i], false, true); // 计算每个轮廓的凸包
    }

    dst = Mat::zeros(src.size(), CV_8UC3); // 创建与原始图像相同大小的空白图像
    vector<Vec4i> empty(0); // 空Vec4i用于绘制凸包

    for (size_t k = 0; k < contours.size(); k++) {
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); // 随机颜色
        drawContours(dst, contours, k, color, 2, LINE_8, hierachy, 0, Point(0, 0)); // 绘制轮廓
        drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0)); // 绘制凸包
    }

    imshow(output_win, dst); // 在输出窗口中显示结果图像

    return;
}
相关推荐
臭东西的学习笔记4 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生4 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605224 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8884 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新4 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录4 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划5 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5205 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
余俊晖6 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~6 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python