27 OpenCV 凸包

文章目录

概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。

正式定义:

包含点集合S中所有点的最小凸多边形称为凸包

Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0
  • 从p0开始极坐标扫描,依次添加p1....pn(排序顺序是根据极坐标的角度大小,逆时针方向)
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包, 反之如果导致一个右转向(顺时针方向)删除该点从凸包中

convexHull 凸包函数

c 复制代码
convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是vector<Point>则自动忽略

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, src_gray, dst; // 定义原始图像、灰度图像和结果图像
int threshold_value = 100; // 初始阈值设为100
int threshold_max = 255; // 最大阈值为255
const char* output_win = "convex hull demo"; // 定义输出窗口名称
RNG rng(12345); // 随机数生成器

// 回调函数声明
void Threshold_Callback(int, void*);

int main(int argc, char** argv) {
    src = imread("D:/vcprojects/images/hand.png"); // 读取图像
    if (!src.data) {
        printf("could not load image...\n");
        return -1;
    }
    
    const char* input_win = "input image";
    namedWindow(input_win); // 创建输入图像窗口
    namedWindow(output_win); // 创建输出图像窗口
    
    const char* trackbar_label = "Threshold : "; // 创建滑动条标题

    cvtColor(src, src_gray, CV_BGR2GRAY); // 将彩色图像转换为灰度图像
    blur(src_gray, src_gray, Size(3, 3), Point(-1, -1), BORDER_DEFAULT); // 对灰度图像进行模糊处理
    imshow(input_win, src_gray); // 在输入窗口中显示灰度图像

    createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, Threshold_Callback); // 创建阈值滑动条
    Threshold_Callback(0, 0); // 初始化回调函数

    waitKey(0); // 等待按键
    return 0;
}

void Threshold_Callback(int, void*) {
    Mat bin_output; // 二值化输出图像
    vector<vector<Point>> contours; // 存储轮廓点集
    vector<Vec4i> hierachy; // 轮廓层级关系
    
    threshold(src_gray, bin_output, threshold_value, threshold_max, THRESH_BINARY); // 对灰度图像进行阈值处理
    findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0)); // 查找图像中的轮廓

    vector<vector<Point>> convexs(contours.size()); // 存储凸包结果
    for (size_t i = 0; i < contours.size(); i++) {
        convexHull(contours[i], convexs[i], false, true); // 计算每个轮廓的凸包
    }

    dst = Mat::zeros(src.size(), CV_8UC3); // 创建与原始图像相同大小的空白图像
    vector<Vec4i> empty(0); // 空Vec4i用于绘制凸包

    for (size_t k = 0; k < contours.size(); k++) {
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); // 随机颜色
        drawContours(dst, contours, k, color, 2, LINE_8, hierachy, 0, Point(0, 0)); // 绘制轮廓
        drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0)); // 绘制凸包
    }

    imshow(output_win, dst); // 在输出窗口中显示结果图像

    return;
}
相关推荐
古希腊掌管学习的神10 分钟前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI38 分钟前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长1 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME2 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董3 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee3 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa3 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐3 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类