27 OpenCV 凸包

文章目录

概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。

正式定义:

包含点集合S中所有点的最小凸多边形称为凸包

Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0
  • 从p0开始极坐标扫描,依次添加p1....pn(排序顺序是根据极坐标的角度大小,逆时针方向)
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包, 反之如果导致一个右转向(顺时针方向)删除该点从凸包中

convexHull 凸包函数

c 复制代码
convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是vector<Point>则自动忽略

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, src_gray, dst; // 定义原始图像、灰度图像和结果图像
int threshold_value = 100; // 初始阈值设为100
int threshold_max = 255; // 最大阈值为255
const char* output_win = "convex hull demo"; // 定义输出窗口名称
RNG rng(12345); // 随机数生成器

// 回调函数声明
void Threshold_Callback(int, void*);

int main(int argc, char** argv) {
    src = imread("D:/vcprojects/images/hand.png"); // 读取图像
    if (!src.data) {
        printf("could not load image...\n");
        return -1;
    }
    
    const char* input_win = "input image";
    namedWindow(input_win); // 创建输入图像窗口
    namedWindow(output_win); // 创建输出图像窗口
    
    const char* trackbar_label = "Threshold : "; // 创建滑动条标题

    cvtColor(src, src_gray, CV_BGR2GRAY); // 将彩色图像转换为灰度图像
    blur(src_gray, src_gray, Size(3, 3), Point(-1, -1), BORDER_DEFAULT); // 对灰度图像进行模糊处理
    imshow(input_win, src_gray); // 在输入窗口中显示灰度图像

    createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, Threshold_Callback); // 创建阈值滑动条
    Threshold_Callback(0, 0); // 初始化回调函数

    waitKey(0); // 等待按键
    return 0;
}

void Threshold_Callback(int, void*) {
    Mat bin_output; // 二值化输出图像
    vector<vector<Point>> contours; // 存储轮廓点集
    vector<Vec4i> hierachy; // 轮廓层级关系
    
    threshold(src_gray, bin_output, threshold_value, threshold_max, THRESH_BINARY); // 对灰度图像进行阈值处理
    findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0)); // 查找图像中的轮廓

    vector<vector<Point>> convexs(contours.size()); // 存储凸包结果
    for (size_t i = 0; i < contours.size(); i++) {
        convexHull(contours[i], convexs[i], false, true); // 计算每个轮廓的凸包
    }

    dst = Mat::zeros(src.size(), CV_8UC3); // 创建与原始图像相同大小的空白图像
    vector<Vec4i> empty(0); // 空Vec4i用于绘制凸包

    for (size_t k = 0; k < contours.size(); k++) {
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); // 随机颜色
        drawContours(dst, contours, k, color, 2, LINE_8, hierachy, 0, Point(0, 0)); // 绘制轮廓
        drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0)); // 绘制凸包
    }

    imshow(output_win, dst); // 在输出窗口中显示结果图像

    return;
}
相关推荐
Moshow郑锴2 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20252 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR3 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8244 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945194 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火5 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴6 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR7 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢7 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网