27 OpenCV 凸包

文章目录

概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。

正式定义:

包含点集合S中所有点的最小凸多边形称为凸包

Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0
  • 从p0开始极坐标扫描,依次添加p1....pn(排序顺序是根据极坐标的角度大小,逆时针方向)
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包, 反之如果导致一个右转向(顺时针方向)删除该点从凸包中

convexHull 凸包函数

c 复制代码
convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是vector<Point>则自动忽略

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, src_gray, dst; // 定义原始图像、灰度图像和结果图像
int threshold_value = 100; // 初始阈值设为100
int threshold_max = 255; // 最大阈值为255
const char* output_win = "convex hull demo"; // 定义输出窗口名称
RNG rng(12345); // 随机数生成器

// 回调函数声明
void Threshold_Callback(int, void*);

int main(int argc, char** argv) {
    src = imread("D:/vcprojects/images/hand.png"); // 读取图像
    if (!src.data) {
        printf("could not load image...\n");
        return -1;
    }
    
    const char* input_win = "input image";
    namedWindow(input_win); // 创建输入图像窗口
    namedWindow(output_win); // 创建输出图像窗口
    
    const char* trackbar_label = "Threshold : "; // 创建滑动条标题

    cvtColor(src, src_gray, CV_BGR2GRAY); // 将彩色图像转换为灰度图像
    blur(src_gray, src_gray, Size(3, 3), Point(-1, -1), BORDER_DEFAULT); // 对灰度图像进行模糊处理
    imshow(input_win, src_gray); // 在输入窗口中显示灰度图像

    createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, Threshold_Callback); // 创建阈值滑动条
    Threshold_Callback(0, 0); // 初始化回调函数

    waitKey(0); // 等待按键
    return 0;
}

void Threshold_Callback(int, void*) {
    Mat bin_output; // 二值化输出图像
    vector<vector<Point>> contours; // 存储轮廓点集
    vector<Vec4i> hierachy; // 轮廓层级关系
    
    threshold(src_gray, bin_output, threshold_value, threshold_max, THRESH_BINARY); // 对灰度图像进行阈值处理
    findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0)); // 查找图像中的轮廓

    vector<vector<Point>> convexs(contours.size()); // 存储凸包结果
    for (size_t i = 0; i < contours.size(); i++) {
        convexHull(contours[i], convexs[i], false, true); // 计算每个轮廓的凸包
    }

    dst = Mat::zeros(src.size(), CV_8UC3); // 创建与原始图像相同大小的空白图像
    vector<Vec4i> empty(0); // 空Vec4i用于绘制凸包

    for (size_t k = 0; k < contours.size(); k++) {
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); // 随机颜色
        drawContours(dst, contours, k, color, 2, LINE_8, hierachy, 0, Point(0, 0)); // 绘制轮廓
        drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0)); // 绘制凸包
    }

    imshow(output_win, dst); // 在输出窗口中显示结果图像

    return;
}
相关推荐
in12345lllp14 小时前
广告学考研白热化突围:AI证书成上岸关键加分项
人工智能·考研
AI浩14 小时前
DeepSeek-R1:通过强化学习激励大语言模型的推理能力
人工智能·语言模型·自然语言处理
listhi52014 小时前
IMM雷达多目标跟踪MATLAB实现方案
人工智能·matlab·目标跟踪
公链开发14 小时前
从案例看AI如何支持链上预测市场:2026相关技术和开发建议
人工智能
技术宅星云14 小时前
0x00.Spring AI Agent开发指南专栏简介
java·人工智能·spring
蝎蟹居14 小时前
GBT 4706.1-2024逐句解读系列(29) 第7.9~7.10条款:开关,档位应明确标识
人工智能·单片机·嵌入式硬件·物联网·安全
说私域14 小时前
基于定制开发AI智能名片商城小程序的运营创新与资金效率提升研究
大数据·人工智能·小程序
砚边数影14 小时前
KingbaseES基础(二):SQL进阶 —— 批量插入/查询 AI 样本数据实战
java·数据库·人工智能·sql·ai
Coder_Boy_15 小时前
基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结 (2)
java·人工智能·spring boot·架构·serverless·ddd·服务网格