Azure databricks spark overwrite 全量更新的时候容易碰到的问题

原因:Azure databricks spark overwrite 全量ADS层表更新的时候容易碰到的问题正在写入结果有服务请求这个表的数据那如何避免呢?

1、 databricks spark overwrite 到的的时候会先TRUNCATE TABLE 然后再写入,就会碰到查询是空的情况,解决办法是用存储过程解决先写入_bak表,再通过存储过程改表名的方式完成替换。以下是核心代码
注意是用 pymysql 执行

CALL DDL的在mysql的存储需要自己写哈

bash 复制代码
from pymysql import *

# 删除的操作
def ddl_mysql(ddlsql,database):
    
    if ddlsql is None or len(ddlsql)==0:
        return '参数deleteQuery异常!'
    
    jdbcUsername = ****
    jdbcPassword = ****
    
    #创建数据库的连接
    conn=connect(host='123456---_mysql.cn',user=jdbcUsername,password=jdbcPassword,database=database,charset='utf8')
    #创建一个游标对象 可以利用这个对象进行数据库的操作
    try:
        cur=conn.cursor()

        cur.execute(ddlsql)
        # 提交事物
        conn.commit()
        #res=cur.fetchall()

        print(ddlsql + ' is success!')
        #print('sucess')
    except Exception as ex:
        print(ex)
    finally:
        cur.close()
        conn.close()

下面是调用

bash 复制代码
# 开始执行用到的
Mydf = df
Mytable = "tab_produce"  # 生产的表名
Myschema = "produce_db"
Mytablebak = Mytable + '_bak'  # 先写入

print(' --执行存入mysql时间:' + str(datetime.datetime.now()) + ' 表为:' + Myschema + '.' + Mytablebak)
save_to_mysql_overwrite(Mydf,Myschema,Mytablebak)
print(' --在mysql上存储完成时间:' + str(datetime.datetime.now()) + ' 表为:' + Myschema + '.' + Mytablebak)
# 去call你mysql的存储过程
ddl_sql = "call xxxxx('{0}','{1}','{2}')".format(Myschema,Mytable,Mytablebak)
print(' --在mysql上执行过程开始时间:' + str(datetime.datetime.now()))
ddl_mysql(ddl_sql,Myschema)
print(' --在mysql上执行过程完成时间:' + str(datetime.datetime.now()) + ' 存入表为:' + Myschema + '.' + Mytable)
print(str(datetime.datetime.now()) + "数据写入xx表:" + Myschema + "." + Mytable +" 完成! ")
相关推荐
2301_7930698228 分钟前
Azure 虚拟机端口资源:专用 IP 和公共 IP Azure Machine Learning 计算实例BUG
tcp/ip·flask·azure
Leinwin14 小时前
行业案例 | ASOS 借助 Azure AI Foundry(国际版)为年轻时尚爱好者打造惊喜体验
人工智能·microsoft·azure
fydw_71515 小时前
生产环境中安装和配置 Nginx 以部署 Flask 应用的详细指南
运维·nginx·flask
qq_4084133920 小时前
spark 执行 hive sql数据丢失
hive·sql·spark
后端码匠20 小时前
Spark 单机模式部署与启动
大数据·分布式·spark
qq_463944861 天前
【Spark征服之路-2.3-Spark运行架构】
大数据·架构·spark
Hygge-star1 天前
【Flask】:轻量级Python Web框架详解
css·flask·html·学习方法·web app
yt948321 天前
如何在IDE中通过Spark操作Hive
ide·hive·spark
不吃饭的猪2 天前
记一次spark在docker本地启动报错
大数据·docker·spark
hbrown2 天前
Flask+LayUI开发手记(八):通用封面缩略图上传实现
javascript·flask·layui