Azure databricks spark overwrite 全量更新的时候容易碰到的问题

原因:Azure databricks spark overwrite 全量ADS层表更新的时候容易碰到的问题正在写入结果有服务请求这个表的数据那如何避免呢?

1、 databricks spark overwrite 到的的时候会先TRUNCATE TABLE 然后再写入,就会碰到查询是空的情况,解决办法是用存储过程解决先写入_bak表,再通过存储过程改表名的方式完成替换。以下是核心代码
注意是用 pymysql 执行

CALL DDL的在mysql的存储需要自己写哈

bash 复制代码
from pymysql import *

# 删除的操作
def ddl_mysql(ddlsql,database):
    
    if ddlsql is None or len(ddlsql)==0:
        return '参数deleteQuery异常!'
    
    jdbcUsername = ****
    jdbcPassword = ****
    
    #创建数据库的连接
    conn=connect(host='123456---_mysql.cn',user=jdbcUsername,password=jdbcPassword,database=database,charset='utf8')
    #创建一个游标对象 可以利用这个对象进行数据库的操作
    try:
        cur=conn.cursor()

        cur.execute(ddlsql)
        # 提交事物
        conn.commit()
        #res=cur.fetchall()

        print(ddlsql + ' is success!')
        #print('sucess')
    except Exception as ex:
        print(ex)
    finally:
        cur.close()
        conn.close()

下面是调用

bash 复制代码
# 开始执行用到的
Mydf = df
Mytable = "tab_produce"  # 生产的表名
Myschema = "produce_db"
Mytablebak = Mytable + '_bak'  # 先写入

print(' --执行存入mysql时间:' + str(datetime.datetime.now()) + ' 表为:' + Myschema + '.' + Mytablebak)
save_to_mysql_overwrite(Mydf,Myschema,Mytablebak)
print(' --在mysql上存储完成时间:' + str(datetime.datetime.now()) + ' 表为:' + Myschema + '.' + Mytablebak)
# 去call你mysql的存储过程
ddl_sql = "call xxxxx('{0}','{1}','{2}')".format(Myschema,Mytable,Mytablebak)
print(' --在mysql上执行过程开始时间:' + str(datetime.datetime.now()))
ddl_mysql(ddl_sql,Myschema)
print(' --在mysql上执行过程完成时间:' + str(datetime.datetime.now()) + ' 存入表为:' + Myschema + '.' + Mytable)
print(str(datetime.datetime.now()) + "数据写入xx表:" + Myschema + "." + Mytable +" 完成! ")
相关推荐
Elastic 中国社区官方博客40 分钟前
Elasticsearch:Microsoft Azure AI Foundry Agent Service 中用于提供可靠信息和编排的上下文引擎
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
许泽宇的技术分享42 分钟前
当AI学会“说人话“:Azure语音合成技术的魔法世界
后端·python·flask
顾安r2 小时前
11.19 脚本 最小web控制linux/termux
linux·服务器·css·flask
Saniffer_SH2 小时前
通过近期测试简单聊一下究竟是直接选择Nvidia Spark还是4090/5090 GPU自建环境
大数据·服务器·图像处理·人工智能·驱动开发·spark·硬件工程
xqlily3 小时前
红帽企业Linux:企业级开源操作系统领航者
后端·python·flask
小熊熊知识库3 小时前
C#接入AI操作步骤详解(deepseek接入)
人工智能·flask·c#
毕设源码-朱学姐7 小时前
【开题答辩全过程】以 基于Flask的绘画交流平台的设计与实现为例,包含答辩的问题和答案
后端·python·flask
Q26433650239 小时前
【有源码】基于Python的睡眠压力监测分析系统-基于Spark数据挖掘的睡眠压力动态可视化分析系统
大数据·hadoop·python·机器学习·数据挖掘·spark·课程设计
MZ_ZXD00121 小时前
springboot流浪动物救助平台-计算机毕业设计源码08780
java·spring boot·后端·python·spring·flask·课程设计
阳爱铭1 天前
ClickHouse 中至关重要的两类复制表引擎——ReplicatedMergeTree和 ReplicatedReplacingMergeTree
大数据·hive·hadoop·sql·clickhouse·spark·hbase