R语言:ggplot2做柱状图,随机生成颜色。

#加载包

> library(ggplot2)

> library(tidyverse)

> library(openxlsx)

> library(reshape2)

> library(RColorBrewer)

> library(randomcoloR)

> library(viridis)

> set.seed(1233) #设立种子数。

> palette <- distinctColorPalette(30) #生成随机30个颜色。

> write.table(palette, file = "30genus color.txt", sep = ",") #记录随机生成的颜色

> setwd("设立目录")

> mydata <- read.xlsx("读取.xlsx")

> data_draw<-melt(mydata,id.vars='species')#转换数据

复制代码
> head(mydata)
                   species      T1     T2     T3     T4      T5     T6     T7     T8     T9
1 Streptococcus salivarius   44092 121843 311183 486756 1156014 223453 163548  31383  47748
2      Rothia mucilaginosa  389451 347085 151944 159476  249279  92135 405152  99208 347259
3   Haemophilus influenzae 1051110 597710      0      0       0      0      0      0   2878
4      Streptococcus mitis  382851 246140 103352 211729   86955  18720 142086 416849   3792
5      Gemella haemolysans  109751  63687  15401 159620   15844   1537 194576 691594  64046
6 Streptococcus pneumoniae  180474 106915  78916  85142   49947  10830 313821 300134      0
> head(data_draw)
                   species variable   value
1 Streptococcus salivarius       T1   44092
2      Rothia mucilaginosa       T1  389451
3   Haemophilus influenzae       T1 1051110
4      Streptococcus mitis       T1  382851
5      Gemella haemolysans       T1  109751
6 Streptococcus pneumoniae       T1  180474

> data_drawspecies \<- factor(data_drawspecies, levels = c("Streptococcus salivarius", "Rothia mucilaginosa", "Haemophilus influenzae", "Streptococcus mitis",

"Gemella haemolysans", "Streptococcus pneumoniae", "Streptococcus parasanguinis", "Neisseria mucosa",

"Streptococcus oralis", "Haemophilus parainfluenzae", "Neisseria subflava", "Neisseria sicca", "Fusobacterium nucleatum",

"Prevotella melaninogenica", "Neisseria flavescens", "Veillonella parvula", "Veillonella dispar",

"Gemella sanguinis", "Streptococcus gordonii", "Leptotrichia wadei", "Streptococcus cristatus",

"Streptococcus anginosus", "Gemella morbillorum", "Neisseria meningitidis", "Veillonella atypica",

"Streptococcus sanguinis", "Corynebacterium argentoratense", "Streptococcus australis",

"Lactobacillus crispatus", "others"))#对种类图形元素排序,保证图形是从大向小排。

> ggplot(data_draw, aes(x = variable, y = value)) +

geom_bar(aes(fill = species), stat = "identity", color = NA, size = 0.4,

position = "fill", alpha = 0.90, width = 0.9) +

scale_fill_manual(values = palette) +

labs(y = "Relative abundance", x = "Sample") +

theme(

text = element_text(family = 'serif'),

axis.title = element_text(size = 14, face = "plain", color = "black"),

axis.text = element_text(size = 14, face = "plain", color = "black"),

legend.title = element_text(size = 14, face = "bold", color = "black"),

panel.background = element_blank(),

axis.line = element_line(colour = "black", size = 0.4),

legend.position = "right", # 在这里设置图例位置

) +

scale_y_continuous(expand = c(0, 0)) +

theme(

plot.margin = unit(c(2, 1, 1, 1), "lines"),

axis.ticks.length = unit(0.1, "cm"),

axis.text.x = element_text(margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm")),

axis.text.y = element_text(margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))

)

这种方法是直接将数据处理好,再导入R语言的。

相关推荐
jiang_changsheng1 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd1 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
请你喝好果汁6411 天前
## 学习笔记:R 语言中比例字符串的数值转换,如GeneRatio中5/100的处理
笔记·学习·r语言
怦怦蓝1 天前
DB2深度解析:从架构原理到与R语言的集成实践
开发语言·架构·r语言·db2
新新学长搞科研1 天前
【CCF主办 | 高认可度会议】第六届人工智能、大数据与算法国际学术会议(CAIBDA 2026)
大数据·开发语言·网络·人工智能·算法·r语言·中国计算机学会
Piar1231sdafa2 天前
战斗车辆状态识别与分类 --- 基于Mask R-CNN和RegNet的模型实现
r语言·cnn
陳土2 天前
R语言Offier包源码—1:read_docx()
r语言
善木科研喵2 天前
IF5.9分,α-硫辛酸如何缓解化疗神经毒性?网络毒理学结合网络药理学双重锁定关键通路!
数据库·数据分析·r语言·sci·生信分析·医学科研
Piar1231sdafa3 天前
椅子目标检测新突破:Cascade R-CNN模型详解与性能优化_1
目标检测·r语言·cnn
Loacnasfhia93 天前
基于Mask R-CNN与RegNetX的钢水罐及未定义物体目标检测系统研究_1
目标检测·r语言·cnn