R语言:ggplot2做柱状图,随机生成颜色。

#加载包

> library(ggplot2)

> library(tidyverse)

> library(openxlsx)

> library(reshape2)

> library(RColorBrewer)

> library(randomcoloR)

> library(viridis)

> set.seed(1233) #设立种子数。

> palette <- distinctColorPalette(30) #生成随机30个颜色。

> write.table(palette, file = "30genus color.txt", sep = ",") #记录随机生成的颜色

> setwd("设立目录")

> mydata <- read.xlsx("读取.xlsx")

> data_draw<-melt(mydata,id.vars='species')#转换数据

复制代码
> head(mydata)
                   species      T1     T2     T3     T4      T5     T6     T7     T8     T9
1 Streptococcus salivarius   44092 121843 311183 486756 1156014 223453 163548  31383  47748
2      Rothia mucilaginosa  389451 347085 151944 159476  249279  92135 405152  99208 347259
3   Haemophilus influenzae 1051110 597710      0      0       0      0      0      0   2878
4      Streptococcus mitis  382851 246140 103352 211729   86955  18720 142086 416849   3792
5      Gemella haemolysans  109751  63687  15401 159620   15844   1537 194576 691594  64046
6 Streptococcus pneumoniae  180474 106915  78916  85142   49947  10830 313821 300134      0
> head(data_draw)
                   species variable   value
1 Streptococcus salivarius       T1   44092
2      Rothia mucilaginosa       T1  389451
3   Haemophilus influenzae       T1 1051110
4      Streptococcus mitis       T1  382851
5      Gemella haemolysans       T1  109751
6 Streptococcus pneumoniae       T1  180474

> data_drawspecies \<- factor(data_drawspecies, levels = c("Streptococcus salivarius", "Rothia mucilaginosa", "Haemophilus influenzae", "Streptococcus mitis",

"Gemella haemolysans", "Streptococcus pneumoniae", "Streptococcus parasanguinis", "Neisseria mucosa",

"Streptococcus oralis", "Haemophilus parainfluenzae", "Neisseria subflava", "Neisseria sicca", "Fusobacterium nucleatum",

"Prevotella melaninogenica", "Neisseria flavescens", "Veillonella parvula", "Veillonella dispar",

"Gemella sanguinis", "Streptococcus gordonii", "Leptotrichia wadei", "Streptococcus cristatus",

"Streptococcus anginosus", "Gemella morbillorum", "Neisseria meningitidis", "Veillonella atypica",

"Streptococcus sanguinis", "Corynebacterium argentoratense", "Streptococcus australis",

"Lactobacillus crispatus", "others"))#对种类图形元素排序,保证图形是从大向小排。

> ggplot(data_draw, aes(x = variable, y = value)) +

geom_bar(aes(fill = species), stat = "identity", color = NA, size = 0.4,

position = "fill", alpha = 0.90, width = 0.9) +

scale_fill_manual(values = palette) +

labs(y = "Relative abundance", x = "Sample") +

theme(

text = element_text(family = 'serif'),

axis.title = element_text(size = 14, face = "plain", color = "black"),

axis.text = element_text(size = 14, face = "plain", color = "black"),

legend.title = element_text(size = 14, face = "bold", color = "black"),

panel.background = element_blank(),

axis.line = element_line(colour = "black", size = 0.4),

legend.position = "right", # 在这里设置图例位置

) +

scale_y_continuous(expand = c(0, 0)) +

theme(

plot.margin = unit(c(2, 1, 1, 1), "lines"),

axis.ticks.length = unit(0.1, "cm"),

axis.text.x = element_text(margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm")),

axis.text.y = element_text(margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))

)

这种方法是直接将数据处理好,再导入R语言的。

相关推荐
UQWRJ1 小时前
菜鸟教程R语言一二章阅读笔记
开发语言·笔记·r语言
Tiger Z13 小时前
《R for Data Science (2e)》免费中文翻译 (第2章) --- Workflow: basics
r语言·数据科学·中文翻译
Chef_Chen1 天前
从0开始学习R语言--Day55--弹性网络
r语言
魔力之心2 天前
R study notes[1]
r语言
Chef_Chen3 天前
从0开始学习R语言--Day57--SCAD模型
开发语言·学习·r语言
医工交叉实验工坊3 天前
R 语言绘制六种精美热图:转录组数据可视化实践(基于 pheatmap 包)
开发语言·信息可视化·r语言
AAIshangyanxiu3 天前
最新基于R语言结构方程模型分析与实践技术应用
开发语言·r语言·结构方程模型·生态统计学
biomooc4 天前
R拟合 | 一个分布能看到三个峰,怎么拟合出这三个正态分布的参数? | 高斯混合模型 与 EM算法
r语言
请你喝好果汁6414 天前
R中匹配函数
开发语言·r语言
Tiger Z4 天前
R 语言科研配色 --- 第 81 期 (附免费下载的配色绘图PPT)
r语言·科研·配色