R语言:ggplot2做柱状图,随机生成颜色。

#加载包

> library(ggplot2)

> library(tidyverse)

> library(openxlsx)

> library(reshape2)

> library(RColorBrewer)

> library(randomcoloR)

> library(viridis)

> set.seed(1233) #设立种子数。

> palette <- distinctColorPalette(30) #生成随机30个颜色。

> write.table(palette, file = "30genus color.txt", sep = ",") #记录随机生成的颜色

> setwd("设立目录")

> mydata <- read.xlsx("读取.xlsx")

> data_draw<-melt(mydata,id.vars='species')#转换数据

复制代码
> head(mydata)
                   species      T1     T2     T3     T4      T5     T6     T7     T8     T9
1 Streptococcus salivarius   44092 121843 311183 486756 1156014 223453 163548  31383  47748
2      Rothia mucilaginosa  389451 347085 151944 159476  249279  92135 405152  99208 347259
3   Haemophilus influenzae 1051110 597710      0      0       0      0      0      0   2878
4      Streptococcus mitis  382851 246140 103352 211729   86955  18720 142086 416849   3792
5      Gemella haemolysans  109751  63687  15401 159620   15844   1537 194576 691594  64046
6 Streptococcus pneumoniae  180474 106915  78916  85142   49947  10830 313821 300134      0
> head(data_draw)
                   species variable   value
1 Streptococcus salivarius       T1   44092
2      Rothia mucilaginosa       T1  389451
3   Haemophilus influenzae       T1 1051110
4      Streptococcus mitis       T1  382851
5      Gemella haemolysans       T1  109751
6 Streptococcus pneumoniae       T1  180474

> data_drawspecies \<- factor(data_drawspecies, levels = c("Streptococcus salivarius", "Rothia mucilaginosa", "Haemophilus influenzae", "Streptococcus mitis",

"Gemella haemolysans", "Streptococcus pneumoniae", "Streptococcus parasanguinis", "Neisseria mucosa",

"Streptococcus oralis", "Haemophilus parainfluenzae", "Neisseria subflava", "Neisseria sicca", "Fusobacterium nucleatum",

"Prevotella melaninogenica", "Neisseria flavescens", "Veillonella parvula", "Veillonella dispar",

"Gemella sanguinis", "Streptococcus gordonii", "Leptotrichia wadei", "Streptococcus cristatus",

"Streptococcus anginosus", "Gemella morbillorum", "Neisseria meningitidis", "Veillonella atypica",

"Streptococcus sanguinis", "Corynebacterium argentoratense", "Streptococcus australis",

"Lactobacillus crispatus", "others"))#对种类图形元素排序,保证图形是从大向小排。

> ggplot(data_draw, aes(x = variable, y = value)) +

geom_bar(aes(fill = species), stat = "identity", color = NA, size = 0.4,

position = "fill", alpha = 0.90, width = 0.9) +

scale_fill_manual(values = palette) +

labs(y = "Relative abundance", x = "Sample") +

theme(

text = element_text(family = 'serif'),

axis.title = element_text(size = 14, face = "plain", color = "black"),

axis.text = element_text(size = 14, face = "plain", color = "black"),

legend.title = element_text(size = 14, face = "bold", color = "black"),

panel.background = element_blank(),

axis.line = element_line(colour = "black", size = 0.4),

legend.position = "right", # 在这里设置图例位置

) +

scale_y_continuous(expand = c(0, 0)) +

theme(

plot.margin = unit(c(2, 1, 1, 1), "lines"),

axis.ticks.length = unit(0.1, "cm"),

axis.text.x = element_text(margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm")),

axis.text.y = element_text(margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))

)

这种方法是直接将数据处理好,再导入R语言的。

相关推荐
lisw052 天前
R语言的专业网站top5推荐
开发语言·r语言
清同趣科研2 天前
扩增子分析|R分析之微生物生态网络稳定性评估之节点和连接的恒常性、节点持久性以及组成稳定性指数计算
开发语言·r语言
zm-v-159304339864 天前
解锁生命周期评价密码:OpenLCA、GREET 与 R 语言的融合应用
r语言·生命周期
生信大杂烩4 天前
R语言绘图 | 渐变火山图
数据分析·r语言
KY_chenzhao6 天前
用R语言+随机森林玩转遥感空间预测-基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
随机森林·机器学习·r语言·生态·遥感·空间预测
没有梦想的咸鱼185-1037-16636 天前
【生命周期分析(Life Cycle Assessment: LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建及典型案例应用
数据分析·r语言
没有梦想的咸鱼185-1037-16637 天前
全球森林数据如何分析?基于R语言森林生态系统结构、功能与稳定性分析与可视化
开发语言·随机森林·数据分析·r语言
Tiger Z7 天前
R 语言科研绘图 --- 桑基图-汇总
开发语言·r语言·贴图
Expecto09 天前
因子分析——数学原理及R语言代码
算法·r语言·统计学·多元统计分析
人类群星闪耀时9 天前
R语言数据挖掘:从“挖井”到“淘金”
开发语言·数据挖掘·r语言