BurstAttention:可对非常长的序列进行高效的分布式注意力计算

提高llm中注意力机制效率的努力主要集中在两种方法上:优化单设备计算和存储能力,如FlashAttention,以及利用多设备的分布式系统,如RingAttention。

FlashAttention通过使用静态随机存储器(SRAM)来存储中间状态,而不是依赖于高带宽存储器(HBM)来提高注意力计算速度。

而RingAttention通过将长序列划分为子序列并将其分布在多个设备上进行并行处理来处理长序列。

虽然它们都提高了处理速度和效率,如果将它们组合起来使用是否可以有更大的提高呢?理论上是这样,但是在分布式环境中直接组合这两种方法无法充分利用它们的优势,并且存在兼容性问题。

而最新的研究BurstAttention可以将2者结合,作为RingAttention和FlashAttention之间的桥梁。

BurstAttention是一个创新的框架,它优化了跨设备的计算和通信,增强了内存使用,最小化了通信开销,提高了缓存效率。

BurstAttention在集群中的设备之间分割序列,每个设备通过将序列投影到查询、键和值嵌入中来处理序列的一部分。然后这些片段在设备之间循环,计算本地注意力得分,并将其汇总为全局注意力得分。

在他们的实验中,表明BurstAttention减少了40%的通信开销,并将8×A100 gpu上128K长度序列的训练速度提高了一倍。

这篇论文是3月发布的,但是作者没有提到他们是否会发布他们的实现,所以我们先看看他的论文吧:

https://avoid.overfit.cn/post/5aacdef85b104ff0a9faea9ad84f2a95

相关推荐
神策数据2 分钟前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_941333104 分钟前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹12 分钟前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣20 分钟前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
Honmaple1 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli71 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所1 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全
数据猿1 小时前
硬盘价格涨疯了,AI存储何去何从?
人工智能
zhangfeng11331 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
陈天伟教授2 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理