BurstAttention:可对非常长的序列进行高效的分布式注意力计算

提高llm中注意力机制效率的努力主要集中在两种方法上:优化单设备计算和存储能力,如FlashAttention,以及利用多设备的分布式系统,如RingAttention。

FlashAttention通过使用静态随机存储器(SRAM)来存储中间状态,而不是依赖于高带宽存储器(HBM)来提高注意力计算速度。

而RingAttention通过将长序列划分为子序列并将其分布在多个设备上进行并行处理来处理长序列。

虽然它们都提高了处理速度和效率,如果将它们组合起来使用是否可以有更大的提高呢?理论上是这样,但是在分布式环境中直接组合这两种方法无法充分利用它们的优势,并且存在兼容性问题。

而最新的研究BurstAttention可以将2者结合,作为RingAttention和FlashAttention之间的桥梁。

BurstAttention是一个创新的框架,它优化了跨设备的计算和通信,增强了内存使用,最小化了通信开销,提高了缓存效率。

BurstAttention在集群中的设备之间分割序列,每个设备通过将序列投影到查询、键和值嵌入中来处理序列的一部分。然后这些片段在设备之间循环,计算本地注意力得分,并将其汇总为全局注意力得分。

在他们的实验中,表明BurstAttention减少了40%的通信开销,并将8×A100 gpu上128K长度序列的训练速度提高了一倍。

这篇论文是3月发布的,但是作者没有提到他们是否会发布他们的实现,所以我们先看看他的论文吧:

https://avoid.overfit.cn/post/5aacdef85b104ff0a9faea9ad84f2a95

相关推荐
Jack___Xue几秒前
AI大模型微调(三)------Qwen3模型Lora微调(使用Llamafactory)
人工智能
狮子座明仔13 分钟前
Plan-and-Act:让AI智能体学会“先想后做“
人工智能·深度学习·语言模型·自然语言处理
许泽宇的技术分享16 分钟前
当 AI 助手遇上全平台消息:Clawdbot 的架构奇遇记
人工智能·typescript·ai助手
GatiArt雷30 分钟前
基于YOLOv8的轻量化AI目标检测在嵌入式设备上的落地实现
人工智能·yolo·目标检测
搞科研的小刘选手42 分钟前
【双一流高校主办】第五届光学与机器视觉国际学术会议(ICOMV 2026)
人工智能·计算机视觉·机器视觉·光学·学术会议·控制工程·先进算法
Katecat9966343 分钟前
使用YOLOv26实现乌鸦鸽子麻雀等城市鸟类自动检测与分类
人工智能·yolo·分类
CHU7290351 小时前
在线教学课堂APP前端功能:搭建高效线上教学生态
前端·人工智能·小程序·php
szcsun52 小时前
机器学习(一)
人工智能·机器学习
sonadorje2 小时前
矩阵的“内积”和“乘法”
人工智能·机器学习·矩阵
lixin5565562 小时前
基于迁移学习的图像风格增强器
java·人工智能·pytorch·python·深度学习·语言模型