BurstAttention:可对非常长的序列进行高效的分布式注意力计算

提高llm中注意力机制效率的努力主要集中在两种方法上:优化单设备计算和存储能力,如FlashAttention,以及利用多设备的分布式系统,如RingAttention。

FlashAttention通过使用静态随机存储器(SRAM)来存储中间状态,而不是依赖于高带宽存储器(HBM)来提高注意力计算速度。

而RingAttention通过将长序列划分为子序列并将其分布在多个设备上进行并行处理来处理长序列。

虽然它们都提高了处理速度和效率,如果将它们组合起来使用是否可以有更大的提高呢?理论上是这样,但是在分布式环境中直接组合这两种方法无法充分利用它们的优势,并且存在兼容性问题。

而最新的研究BurstAttention可以将2者结合,作为RingAttention和FlashAttention之间的桥梁。

BurstAttention是一个创新的框架,它优化了跨设备的计算和通信,增强了内存使用,最小化了通信开销,提高了缓存效率。

BurstAttention在集群中的设备之间分割序列,每个设备通过将序列投影到查询、键和值嵌入中来处理序列的一部分。然后这些片段在设备之间循环,计算本地注意力得分,并将其汇总为全局注意力得分。

在他们的实验中,表明BurstAttention减少了40%的通信开销,并将8×A100 gpu上128K长度序列的训练速度提高了一倍。

这篇论文是3月发布的,但是作者没有提到他们是否会发布他们的实现,所以我们先看看他的论文吧:

https://avoid.overfit.cn/post/5aacdef85b104ff0a9faea9ad84f2a95

相关推荐
棒棒的皮皮3 分钟前
【深度学习】YOLO 模型核心部署格式全解析(PyTorch/ONNX/TensorRT/TFLite)
pytorch·深度学习·yolo·计算机视觉
雷焰财经15 分钟前
务实深耕,全栈赋能:宇信科技引领金融AI工程化落地新范式
人工智能·科技·金融
西柚小萌新16 分钟前
【计算机视觉CV:标注工具】--ISAT
人工智能·计算机视觉
三万棵雪松20 分钟前
【AI小智硬件程序(八)】
c++·人工智能·嵌入式·esp32·ai小智
基层小星21 分钟前
用ai写完材料有个差不多后,材料星如何精准修改润色?
人工智能·ai·ai写作·笔杆子·公文写作·修改润色
码农幻想梦22 分钟前
实验7 知识表示与推理
开发语言·人工智能·python
_YiFei24 分钟前
从 “选题卡壳” 到 “PPT 定稿”,AI 如何搞定开题全流程?
人工智能
IT_陈寒24 分钟前
SpringBoot 3.0实战:10个高效开发技巧让你的启动时间减少50%
前端·人工智能·后端
源于花海30 分钟前
迁移学习的第二类方法:特征选择
人工智能·机器学习·迁移学习·特征选择
8K超高清34 分钟前
2026科技风口:有哪些前沿场景即将落地?
网络·人工智能·科技·数码相机·计算机视觉