BurstAttention:可对非常长的序列进行高效的分布式注意力计算

提高llm中注意力机制效率的努力主要集中在两种方法上:优化单设备计算和存储能力,如FlashAttention,以及利用多设备的分布式系统,如RingAttention。

FlashAttention通过使用静态随机存储器(SRAM)来存储中间状态,而不是依赖于高带宽存储器(HBM)来提高注意力计算速度。

而RingAttention通过将长序列划分为子序列并将其分布在多个设备上进行并行处理来处理长序列。

虽然它们都提高了处理速度和效率,如果将它们组合起来使用是否可以有更大的提高呢?理论上是这样,但是在分布式环境中直接组合这两种方法无法充分利用它们的优势,并且存在兼容性问题。

而最新的研究BurstAttention可以将2者结合,作为RingAttention和FlashAttention之间的桥梁。

BurstAttention是一个创新的框架,它优化了跨设备的计算和通信,增强了内存使用,最小化了通信开销,提高了缓存效率。

BurstAttention在集群中的设备之间分割序列,每个设备通过将序列投影到查询、键和值嵌入中来处理序列的一部分。然后这些片段在设备之间循环,计算本地注意力得分,并将其汇总为全局注意力得分。

在他们的实验中,表明BurstAttention减少了40%的通信开销,并将8×A100 gpu上128K长度序列的训练速度提高了一倍。

这篇论文是3月发布的,但是作者没有提到他们是否会发布他们的实现,所以我们先看看他的论文吧:

https://avoid.overfit.cn/post/5aacdef85b104ff0a9faea9ad84f2a95

相关推荐
AI弟3 分钟前
大语言模型进阶(一)之大语言模型基础
人工智能·python·深度学习·机器学习·语言模型·自然语言处理
算力魔方AIPC11 分钟前
如何用OpenVINO™部署PP-StructureV3到Intel GPU上
人工智能·openvino
AI科技分享14 分钟前
无人机低空一网统飞平台,快速落地行业低空智慧巡检
人工智能·无人机
sword_csdn17 分钟前
《SAM 3D: 3Dfy Anything in Images》学习总结
人工智能·3d
子午20 分钟前
【鸟类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
qq_1601448721 分钟前
AI爱好者入门:2025年CAIE报考指南与学习路径解析
人工智能·学习
WebGIS开发22 分钟前
东北黑土地保护|智慧城市地图可视化智能监测、管理系统
人工智能·gis·智慧城市·gis开发·webgis·地理信息科学
某林21223 分钟前
在slam建图中为何坐标base_link,laser,imu_link是始终在一起的,但是odom 会与这位三个坐标在运行中产生偏差
人工智能·算法
Keep__Fighting25 分钟前
【机器学习:逻辑回归】
人工智能·python·算法·机器学习·逻辑回归·scikit-learn·matplotlib
m0_6265352025 分钟前
detr论文基础阅读
深度学习