信号处理--基于FBCSP滤波方法的运动想象分类

目录

理论

工具

方法

代码获取


理论

复制代码
通用空间模式 (CSP) 算法可以用来有效构建最佳空间滤波器区分,然后实现运动想象的数据中的脑电信号的区分。然而,空间滤波器性能的好坏主要取决于其工作频带。如果脑电信号没有经过滤波或者滤波的频带范围不合适,都会导致经过CSP空间滤波器提取的特征,在后续分类任务中,有一个比较差的表现。因此,在使用CSP算法时候,我们常常需要选择一个比较大的信号频带或者是根据被试挑选一个比较好的频带的频带范围。这个导致了阻碍了CSP方法的广泛应用。为了解决这样的问题,滤波器组CSP分类算法被提出来。

滤波器组 filter-bank CSP 分类算法 (FBCSP), 实现共分为4步:

将脑电信号划分为若干个频带的子信号;
分别提取不同频带的信号的CSP特征;
使用特征筛选算法,得到相对优化的频带CSP特征组;
使用分类模型实现脑电信号的分类。

工具

python 3.8

BCI dataset IV-1 数据集

方法

定义滤波器组,实现信号的频带分解

python 复制代码
#acquire and combine features of different fequency bands
features_train=[]
features_test=[]
freq=[8,12,16,20,24,28,32]
for freq_count in range(len(freq)):
#loop for freqency
    lower=freq[freq_count]
    if lower==freq[-1]:
        break
    higher=freq[freq_count+1]
    X_train_filt=butter_bandpass_filter(X_train,lowcut=lower,highcut=higher,fs=128,order=8)
    X_test_filt=butter_bandpass_filter(X_test,lowcut=lower,highcut=higher,fs=128,order=8)
    tmp_train=csp.fit_transform(X_train_filt,y_train)
    tmp_test=csp.transform(X_test_filt)
    if freq_count==0:
        features_train=tmp_train
        features_test=tmp_test
    else:
        features_train=np.concatenate((features_train,tmp_train),axis=1)
        features_test=np.concatenate((features_test,tmp_test),axis=1)

使用MIBIF算法实现提取的特征的选择

python 复制代码
select_K=sklearn.feature_selection.SelectKBest(mutual_info_classif,k=10).fit(features_train,y_train)
New_train=select_K.transform(features_train)
#np.random.shuffle(New_train)
New_test=select_K.transform(features_test)
#np.random.shuffle(New_test)
print(New_train.shape)
print(New_test.shape)
ss = preprocessing.StandardScaler()
X_select_train = ss.fit_transform(New_train,y_train)
X_select_test = ss.fit_transform(New_test)

使用支持向量机实现最后的分类和测试

python 复制代码
#calssify
from sklearn.svm import SVC
clf=svm.SVC(C=0.8,kernel='rbf')
clf.fit(X_select_train,y_train)
y_pred=clf.predict(X_select_test)
print(y_test)
print(y_pred)
acc=accuracy_score(y_test,y_pred)
print(acc)

使用不同的特征提取算法和分类器在同一个数据集上面的性能比较结果:

在5个不同被试上面采用不同的CSP及变体方法的结果比较:

代码获取

信号处理-基于FBCSP滤波方法的运动想象分类 python代码https://download.csdn.net/download/YINTENAXIONGNAIER/89021756

相关推荐
_codemonster2 分钟前
自然语言处理容易混淆知识点(七)模型架构 vs 使用方式
人工智能·自然语言处理
傻啦嘿哟2 分钟前
隧道代理在数据挖掘中的实战应用:从原理到落地的全流程解析
人工智能·数据挖掘
会飞的小新3 分钟前
从 LLM 到 ReACT Agent:推理与行动协同的智能体框架深度解析
人工智能·语言模型
无心水3 分钟前
【神经风格迁移:多风格】17、AIGC+风格迁移:用Stable Diffusion生成自定义风格
人工智能·机器学习·语言模型·stable diffusion·aigc·机器翻译·vgg
摸鱼仙人~3 分钟前
Bert系列之为什么选择chinese_roberta_wwm_ext
人工智能·深度学习·bert
Roxanne0074 分钟前
吴教授《AI for everyone》笔记梳理(DAY1)
人工智能·笔记
倔强的石头1068 分钟前
昇腾大模型量化实战:ModelSlim 工具上手与 W8A8 精度优化全流程解析
人工智能·机器学习
TMT星球11 分钟前
“智汇众力 共擎新元”,机器人租赁平台“擎天租”发布
大数据·人工智能·机器人
HUT_Tyne26512 分钟前
第2章 语言模型基础
人工智能·语言模型·自然语言处理
熬夜敲代码的小N13 分钟前
自然语言处理与Transformer模型
人工智能·自然语言处理·transformer