信号处理--基于FBCSP滤波方法的运动想象分类

目录

理论

工具

方法

代码获取


理论

复制代码
通用空间模式 (CSP) 算法可以用来有效构建最佳空间滤波器区分,然后实现运动想象的数据中的脑电信号的区分。然而,空间滤波器性能的好坏主要取决于其工作频带。如果脑电信号没有经过滤波或者滤波的频带范围不合适,都会导致经过CSP空间滤波器提取的特征,在后续分类任务中,有一个比较差的表现。因此,在使用CSP算法时候,我们常常需要选择一个比较大的信号频带或者是根据被试挑选一个比较好的频带的频带范围。这个导致了阻碍了CSP方法的广泛应用。为了解决这样的问题,滤波器组CSP分类算法被提出来。

滤波器组 filter-bank CSP 分类算法 (FBCSP), 实现共分为4步:

将脑电信号划分为若干个频带的子信号;
分别提取不同频带的信号的CSP特征;
使用特征筛选算法,得到相对优化的频带CSP特征组;
使用分类模型实现脑电信号的分类。

工具

python 3.8

BCI dataset IV-1 数据集

方法

定义滤波器组,实现信号的频带分解

python 复制代码
#acquire and combine features of different fequency bands
features_train=[]
features_test=[]
freq=[8,12,16,20,24,28,32]
for freq_count in range(len(freq)):
#loop for freqency
    lower=freq[freq_count]
    if lower==freq[-1]:
        break
    higher=freq[freq_count+1]
    X_train_filt=butter_bandpass_filter(X_train,lowcut=lower,highcut=higher,fs=128,order=8)
    X_test_filt=butter_bandpass_filter(X_test,lowcut=lower,highcut=higher,fs=128,order=8)
    tmp_train=csp.fit_transform(X_train_filt,y_train)
    tmp_test=csp.transform(X_test_filt)
    if freq_count==0:
        features_train=tmp_train
        features_test=tmp_test
    else:
        features_train=np.concatenate((features_train,tmp_train),axis=1)
        features_test=np.concatenate((features_test,tmp_test),axis=1)

使用MIBIF算法实现提取的特征的选择

python 复制代码
select_K=sklearn.feature_selection.SelectKBest(mutual_info_classif,k=10).fit(features_train,y_train)
New_train=select_K.transform(features_train)
#np.random.shuffle(New_train)
New_test=select_K.transform(features_test)
#np.random.shuffle(New_test)
print(New_train.shape)
print(New_test.shape)
ss = preprocessing.StandardScaler()
X_select_train = ss.fit_transform(New_train,y_train)
X_select_test = ss.fit_transform(New_test)

使用支持向量机实现最后的分类和测试

python 复制代码
#calssify
from sklearn.svm import SVC
clf=svm.SVC(C=0.8,kernel='rbf')
clf.fit(X_select_train,y_train)
y_pred=clf.predict(X_select_test)
print(y_test)
print(y_pred)
acc=accuracy_score(y_test,y_pred)
print(acc)

使用不同的特征提取算法和分类器在同一个数据集上面的性能比较结果:

在5个不同被试上面采用不同的CSP及变体方法的结果比较:

代码获取

信号处理-基于FBCSP滤波方法的运动想象分类 python代码https://download.csdn.net/download/YINTENAXIONGNAIER/89021756

相关推荐
CareyWYR4 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信6 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20096 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟6 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播6 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训6 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹7 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55187 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora7 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大7 小时前
关于前馈神经网络
人工智能·深度学习·神经网络