信号处理--基于FBCSP滤波方法的运动想象分类

目录

理论

工具

方法

代码获取


理论

复制代码
通用空间模式 (CSP) 算法可以用来有效构建最佳空间滤波器区分,然后实现运动想象的数据中的脑电信号的区分。然而,空间滤波器性能的好坏主要取决于其工作频带。如果脑电信号没有经过滤波或者滤波的频带范围不合适,都会导致经过CSP空间滤波器提取的特征,在后续分类任务中,有一个比较差的表现。因此,在使用CSP算法时候,我们常常需要选择一个比较大的信号频带或者是根据被试挑选一个比较好的频带的频带范围。这个导致了阻碍了CSP方法的广泛应用。为了解决这样的问题,滤波器组CSP分类算法被提出来。

滤波器组 filter-bank CSP 分类算法 (FBCSP), 实现共分为4步:

将脑电信号划分为若干个频带的子信号;
分别提取不同频带的信号的CSP特征;
使用特征筛选算法,得到相对优化的频带CSP特征组;
使用分类模型实现脑电信号的分类。

工具

python 3.8

BCI dataset IV-1 数据集

方法

定义滤波器组,实现信号的频带分解

python 复制代码
#acquire and combine features of different fequency bands
features_train=[]
features_test=[]
freq=[8,12,16,20,24,28,32]
for freq_count in range(len(freq)):
#loop for freqency
    lower=freq[freq_count]
    if lower==freq[-1]:
        break
    higher=freq[freq_count+1]
    X_train_filt=butter_bandpass_filter(X_train,lowcut=lower,highcut=higher,fs=128,order=8)
    X_test_filt=butter_bandpass_filter(X_test,lowcut=lower,highcut=higher,fs=128,order=8)
    tmp_train=csp.fit_transform(X_train_filt,y_train)
    tmp_test=csp.transform(X_test_filt)
    if freq_count==0:
        features_train=tmp_train
        features_test=tmp_test
    else:
        features_train=np.concatenate((features_train,tmp_train),axis=1)
        features_test=np.concatenate((features_test,tmp_test),axis=1)

使用MIBIF算法实现提取的特征的选择

python 复制代码
select_K=sklearn.feature_selection.SelectKBest(mutual_info_classif,k=10).fit(features_train,y_train)
New_train=select_K.transform(features_train)
#np.random.shuffle(New_train)
New_test=select_K.transform(features_test)
#np.random.shuffle(New_test)
print(New_train.shape)
print(New_test.shape)
ss = preprocessing.StandardScaler()
X_select_train = ss.fit_transform(New_train,y_train)
X_select_test = ss.fit_transform(New_test)

使用支持向量机实现最后的分类和测试

python 复制代码
#calssify
from sklearn.svm import SVC
clf=svm.SVC(C=0.8,kernel='rbf')
clf.fit(X_select_train,y_train)
y_pred=clf.predict(X_select_test)
print(y_test)
print(y_pred)
acc=accuracy_score(y_test,y_pred)
print(acc)

使用不同的特征提取算法和分类器在同一个数据集上面的性能比较结果:

在5个不同被试上面采用不同的CSP及变体方法的结果比较:

代码获取

信号处理-基于FBCSP滤波方法的运动想象分类 python代码https://download.csdn.net/download/YINTENAXIONGNAIER/89021756

相关推荐
袁庭新4 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心4 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算4 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位4 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算4 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
聚客AI6 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar6 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生7 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队7 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁8 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能