信号处理--基于FBCSP滤波方法的运动想象分类

目录

理论

工具

方法

代码获取


理论

复制代码
通用空间模式 (CSP) 算法可以用来有效构建最佳空间滤波器区分,然后实现运动想象的数据中的脑电信号的区分。然而,空间滤波器性能的好坏主要取决于其工作频带。如果脑电信号没有经过滤波或者滤波的频带范围不合适,都会导致经过CSP空间滤波器提取的特征,在后续分类任务中,有一个比较差的表现。因此,在使用CSP算法时候,我们常常需要选择一个比较大的信号频带或者是根据被试挑选一个比较好的频带的频带范围。这个导致了阻碍了CSP方法的广泛应用。为了解决这样的问题,滤波器组CSP分类算法被提出来。

滤波器组 filter-bank CSP 分类算法 (FBCSP), 实现共分为4步:

将脑电信号划分为若干个频带的子信号;
分别提取不同频带的信号的CSP特征;
使用特征筛选算法,得到相对优化的频带CSP特征组;
使用分类模型实现脑电信号的分类。

工具

python 3.8

BCI dataset IV-1 数据集

方法

定义滤波器组,实现信号的频带分解

python 复制代码
#acquire and combine features of different fequency bands
features_train=[]
features_test=[]
freq=[8,12,16,20,24,28,32]
for freq_count in range(len(freq)):
#loop for freqency
    lower=freq[freq_count]
    if lower==freq[-1]:
        break
    higher=freq[freq_count+1]
    X_train_filt=butter_bandpass_filter(X_train,lowcut=lower,highcut=higher,fs=128,order=8)
    X_test_filt=butter_bandpass_filter(X_test,lowcut=lower,highcut=higher,fs=128,order=8)
    tmp_train=csp.fit_transform(X_train_filt,y_train)
    tmp_test=csp.transform(X_test_filt)
    if freq_count==0:
        features_train=tmp_train
        features_test=tmp_test
    else:
        features_train=np.concatenate((features_train,tmp_train),axis=1)
        features_test=np.concatenate((features_test,tmp_test),axis=1)

使用MIBIF算法实现提取的特征的选择

python 复制代码
select_K=sklearn.feature_selection.SelectKBest(mutual_info_classif,k=10).fit(features_train,y_train)
New_train=select_K.transform(features_train)
#np.random.shuffle(New_train)
New_test=select_K.transform(features_test)
#np.random.shuffle(New_test)
print(New_train.shape)
print(New_test.shape)
ss = preprocessing.StandardScaler()
X_select_train = ss.fit_transform(New_train,y_train)
X_select_test = ss.fit_transform(New_test)

使用支持向量机实现最后的分类和测试

python 复制代码
#calssify
from sklearn.svm import SVC
clf=svm.SVC(C=0.8,kernel='rbf')
clf.fit(X_select_train,y_train)
y_pred=clf.predict(X_select_test)
print(y_test)
print(y_pred)
acc=accuracy_score(y_test,y_pred)
print(acc)

使用不同的特征提取算法和分类器在同一个数据集上面的性能比较结果:

在5个不同被试上面采用不同的CSP及变体方法的结果比较:

代码获取

信号处理-基于FBCSP滤波方法的运动想象分类 python代码https://download.csdn.net/download/YINTENAXIONGNAIER/89021756

相关推荐
美狐美颜SDK开放平台24 分钟前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩1 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly2 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962182 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉2 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会3 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China3 小时前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网
StarPrayers.4 小时前
自蒸馏学习方法
人工智能·算法·学习方法
咚咚王者4 小时前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python
深度学习lover4 小时前
<数据集>yolo航拍斑马线识别数据集<目标检测>
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集·航拍斑马线识别