来看一个cortina Gemini ethernet driver的例子。
DTS file路径 /arch/arm/boot/dts/gemini/gemini.dtsi.
Driver 路径 drivers/net/ethernet/cortina/gemini.c
cpp
{
soc {
#address-cells = <1>;
#size-cells = <1>;
ranges;
compatible = "simple-bus";
....
ethernet: ethernet@60000000 {
compatible = "cortina,gemini-ethernet";
reg = <0x60000000 0x4000>, /* Global registers, queue */
<0x60004000 0x2000>, /* V-bit */
<0x60006000 0x2000>; /* A-bit */
pinctrl-names = "default";
pinctrl-0 = <&gmii_default_pins>;
status = "disabled";
#address-cells = <1>;
#size-cells = <1>;
ranges;
gmac0: ethernet-port@0 {
compatible = "cortina,gemini-ethernet-port";
reg = <0x60008000 0x2000>, /* Port 0 DMA/TOE */
<0x6000a000 0x2000>; /* Port 0 GMAC */
interrupt-parent = <&intcon>;
interrupts = <1 IRQ_TYPE_LEVEL_HIGH>;
resets = <&syscon GEMINI_RESET_GMAC0>;
clocks = <&syscon GEMINI_CLK_GATE_GMAC0>;
clock-names = "PCLK";
};
gmac1: ethernet-port@1 {
compatible = "cortina,gemini-ethernet-port";
reg = <0x6000c000 0x2000>, /* Port 1 DMA/TOE */
<0x6000e000 0x2000>; /* Port 1 GMAC */
interrupt-parent = <&intcon>;
interrupts = <2 IRQ_TYPE_LEVEL_HIGH>;
resets = <&syscon GEMINI_RESET_GMAC1>;
clocks = <&syscon GEMINI_CLK_GATE_GMAC1>;
clock-names = "PCLK";
};
};
};
};
有之前的博文分析, 根节点下的含有compatible属性的节点在内核启动时会为其创建platform device, 因此 soc节点会有一个platform device与其对应。而soc节点的compatible为已知的特殊属性"simple-bus", 因此也会为其下面的子节点创建platform device, 故 "ethernet"也会有platform device 与其对应。那么"ethernet"厂商驱动只需写自己的平台设备驱动即可。对应以太网驱动,"ethernet"下的子节点 "gmac0" 通常是在ethernet 驱动下解析子节点然后为其创建netdevice。
但是我们看gemini driver, 其对于每个ethernet port 即"gmac"子节点也单独设计的platform driver. 那么ethernet port子节点是如何创建成平台devices的呢?
我们看其处理, 在"ethernet" driver probe函数的结尾使用 devm_of_platform_populate 为其子节点创建platfrom device.
cpp
static int gemini_ethernet_port_probe(struct platform_device *pdev)
{
struct gemini_ethernet_port *port;
struct gemini_ethernet *geth;
parent = dev->parent; //获取其parent "ethernet"device
geth = dev_get_drvdata(parent); // 获取 "etherent" private data
.....
port = netdev_priv(netdev);
SET_NETDEV_DEV(netdev, dev);
port->netdev = netdev;
port->id = id;
port->geth = geth; // ethernet port private与 ethernet private建立关系
}
static int gemini_ethernet_probe(struct platform_device *pdev)
{
....
/* Spawn child devices for the two ports */
return devm_of_platform_populate(dev); //为 ethernet port 子节点创建平台devices
}
static struct platform_driver gemini_ethernet_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = gemini_ethernet_of_match,
},
.probe = gemini_ethernet_probe,
.remove_new = gemini_ethernet_remove,
};
static int __init gemini_ethernet_module_init(void)
{
int ret;
ret = platform_driver_register(&gemini_ethernet_port_driver);
if (ret)
return ret;
ret = platform_driver_register(&gemini_ethernet_driver);
if (ret) {
platform_driver_unregister(&gemini_ethernet_port_driver);
return ret;
}
return 0;
}
思考: 如果dts设计成如下, 如何将ethernet-port 节点创建成platform devices呢?
ethernet: ethernet@60000000 {
compatible = "cortina,gemini-ethernet";
......
ethernet-ports {
#address-cells = <1>
#size-cells = <0>;
gmac0: ethernet-port@0 {
compatible = "cortina,gemini-ethernet-port";
reg = <0x60008000 0x2000>, /* Port 0 DMA/TOE */
<0x6000a000 0x2000>; /* Port 0 GMAC */
...
};
gmac1: ethernet-port@1 {
compatible = "cortina,gemini-ethernet-port";
reg = <0x6000c000 0x2000>, /* Port 1 DMA/TOE */
<0x6000e000 0x2000>; /* Port 1 GMAC */
...
};
};
};
方法一:为"ethernet-ports"创建平台device
const struct of_device_id of_ethernet_ports_match_table[] = {
{.compatible = "cortina,gemini-ethernet-ports", },
{}
};
of_platform_populate(pdev->dev.of_node, of_ethernet_ports_match_table, NULL, &pdev->dev);
在 ethernet probe 函数结尾使用上述, 同时DTS中为"ethernet-ports" 节点添加compatible 属性"cortina,gemini-ethernet-ports"
这样 of_platform_populate(pdev->dev.of_node, of_ethernet_ports_match_table, NULL, &pdev->dev)函数会为其子节点"ethernet-ports" 创建platform device. 同时为"ethernet-ports"的子节点"ethernet-port"创建platform device.
cat /sys/devices/platform/soc/60000000.ethernet/60000000.ethernet:ethernet-ports/
60000000.ethernet:ethernet-ports:ethernet-port@0/
60000000.ethernet:ethernet-ports:ethernet-port@1/
方法二: 绕过 "ethernet-ports" 为 "etherne-port"创建平台device
ethernet_ports_node = of_get_child_by_name(ppe->dev->of_node, "ethernet-ports");
of_platform_populate(ethernet_ports_node, NULL, NULL, &pdev->dev );
在ethernet driver probe结尾使用上述,即 ethernet driver中parse "ethernet-ports"自己点然后调用populate函数为 "ethernet-ports"自己点创建平台设备。注意这里parent device参数仍然使用ethernet devie, 因为"ethernet-ports"并没有创建任何device, "ethernet-port" device hook在 "ethernet" device上。
cat /sys/devices/platform/soc/60000000.ethernet/
60000000.ethernet:ethernet-ports:ethernet-port@0/
60000000.ethernet:ethernet-ports:ethernet-port@1/
再回顾popuate相关函数的实现, 可以看出最终都归结到of_platform_populate函数,第一个参数root为device node类型, 表示要为改device node下的node穿件平台device, 如果为NULL表示根节点(kernel 启动时就是指定的NULL)。第二个参数 matches 可以指定compatible属性,表示 root的子节点如果有子节点match该属性列表就位子节点的子节点继续创建平台device,为NULL则只会创建一级device。最后一个参数struct device *parent表示 root下第一级子节点device的parent device.
/**
* of_platform_populate() - Populate platform_devices from device tree data
* @root: parent of the first level to probe or NULL for the root of the tree
* @matches: match table, NULL to use the default
* @lookup: auxdata table for matching id and platform_data with device nodes
* @parent: parent to hook devices from, NULL for toplevel
*
* Similar to of_platform_bus_probe(), this function walks the device tree
* and creates devices from nodes. It differs in that it follows the modern
* convention of requiring all device nodes to have a 'compatible' property,
* and it is suitable for creating devices which are children of the root
* node (of_platform_bus_probe will only create children of the root which
* are selected by the @matches argument).
*
* New board support should be using this function instead of
* of_platform_bus_probe().
*
* Return: 0 on success, < 0 on failure.
*/
int of_platform_populate(struct device_node *root,
const struct of_device_id *matches,
const struct of_dev_auxdata *lookup,
struct device *parent)
{
......
}
const struct of_device_id of_default_bus_match_table[] = {
{ .compatible = "simple-bus", },
{ .compatible = "simple-mfd", },
{ .compatible = "isa", },
#ifdef CONFIG_ARM_AMBA
{ .compatible = "arm,amba-bus", },
#endif /* CONFIG_ARM_AMBA */
{} /* Empty terminated list */
};
int of_platform_default_populate(struct device_node *root,
const struct of_dev_auxdata *lookup,
struct device *parent)
{
return of_platform_populate(root, of_default_bus_match_table, lookup,
parent);
}
static int __init of_platform_default_populate_init(void)
{
/* Populate everything else. */
of_platform_default_populate(NULL, NULL, NULL);
}
int devm_of_platform_populate(struct device *dev)
{
struct device **ptr;
int ret;
if (!dev)
return -EINVAL;
ptr = devres_alloc(devm_of_platform_populate_release,
sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return -ENOMEM;
ret = of_platform_populate(dev->of_node, NULL, NULL, dev);
if (ret) {
devres_free(ptr);
} else {
*ptr = dev;
devres_add(dev, ptr);
}
return ret;
}