吴恩达2022机器学习专项课程(一) 第一周课程实验:模型表示(Lab_03)

目标

学习如何使用一个变量实现线性回归模型。

导入需要的库

存储特征x和目标变量y

这是真实的训练集,[1.0,2.0]是房子的大小,[300,500]是房子的价格。

使用数组存储训练集的数据:

  • x_train:存储的是所有特征,[1.0,2.0],也就是房子的大小。
  • y_train:存储的是所有目标变量,[300,500],也就是是房子的价格。

获取训练样本的数量

由于我们要计算每一行训练样本的预测值,所以要知道一共有多少行训练样本,也就是求出m的值。

  • shape[0]:查看特征数组里有几个特征,示例中有2个特征,代表2行训练样本,因此m=2。
  • len:查看特征数组长度,数组里有2个特征,因此长度为2,也就是m=2。

获取每一组训练样本

  • x_train[i]/y_train[i]:查看第i行训练样本的特征或目标变量。

绘制训练集的数据点

把训练集的每行训练样本,以数据点的形式绘制在图表里。

初始化w和b

根据线性回归的函数,我们需要先知道w和b的值,这里先不讨论w和b的计算过程,直接给出一个初始值。

计算线性回归的预测值

每一行的训练样本都需要计算出一个预测值,因此m的作用体现出来了,用于循环。

  • f_wb = np.zeros(m):为了方便存储每一行训练样本的预测值,因此需要创建一个初始值为0,元素数量为m个的数组。示例中的m=2,它就是这个样子:【0. 0.】
  • w*x[i]+b:线性回归的计算公式,x[i]表示第一行训练样本的特征。
  • f_wb[i]:存储第i-1行训练样本的预测值。

绘图线性回归预测值的图表

代码

蓝色线条是这段代码绘制的 plt.plot(x_train, tmp_f_wb, c='b', label='Our Prediction')。

输出结果含义:蓝色线条没有拟合数据点,也就是说,模型预测的y值和真实的数据点y值差距很大。因为我们设置的w和b不合适。

尝试不同的w和b

由于给出了正确的w和b,线性回归模型才能够完美预测,但如果使用不同的w和b,例如更换成w=200和b=100,结果如何?

先修改w和b

-输出结果

-输出结果含义:按照我们初始化好的w和b的值,通过给定的x[1,2]和线性回归函数,计算出的预测值是准确的(预测值y帽[300,500]和训练集的y[300,500]),也就是说,我们的线性回归模型能够完美预测。

使用模型示例

经过上述的调整,我们找到了合适的w和b,因此我们的模型就可以用来预测房价了。

总结

首先我们将训练集的数据标记在图表上,然后要找到线性回归函数中合适的w和b。

设置到合适的w和b,我们需要计算每行训练样本的预测值。

通过计算好的预测值,我们要将线性回归函数的趋势绘制在图表中,通过是否能拟合训练集的数据点,来检测w和b是否合适。

由此可以看出,线性回归中比较重要的是要找到合适的w和b,才能比较完美的预测出靠近真实数据的预测值y帽。

这也引出了后面的课程,如何判断w和b是否合适?

相关推荐
莫非王土也非王臣7 分钟前
循环神经网络
人工智能·rnn·深度学习
Java后端的Ai之路10 分钟前
【AI大模型开发】-基于 Word2Vec 的中文古典小说词向量分析实战
人工智能·embedding·向量·word2vec·ai大模型开发
Lips61113 分钟前
第五章 神经网络(含反向传播计算)
人工智能·深度学习·神经网络
gongfuyd14 分钟前
《强化学习的数学原理》中文版第2章-第4章总结
人工智能
程序员华仔16 分钟前
【AI】工作流:小林漫画助手
ai·ai工作流
愚公搬代码20 分钟前
【愚公系列】《AI+直播营销》032-主播的选拔和人设设计(主播人设打造的4个要素)
人工智能
love530love21 分钟前
告别环境崩溃:ONNX 与 Protobuf 版本兼容性指南
人工智能·windows·python·onnx·stablediffusion·comfyui·protobuf
gorgeous(๑>؂<๑)23 分钟前
【电子科大-李晶晶组-AAAI26】利用专用提示引导泛化视觉 - 语言模型
人工智能·语言模型·自然语言处理
程序员果子31 分钟前
GraphRAG:让大模型在知识图谱中精准导航
人工智能·git·语言模型·aigc·知识图谱