OpenCV基于边缘的分割详解

OpenCV 中基于边缘的分割是一种常见的图像分割技术,它利用图像中的边缘信息来进行分割。边缘通常是图像中灰度值变化较大的区域,因此可以作为物体之间的分界线。以下是基于边缘的分割在 OpenCV 中的详细介绍:

  1. Canny 边缘检测(Canny Edge Detection)

    • Canny 边缘检测是一种广泛使用的边缘检测算法,它在检测边缘的同时尽量减少噪声的影响,并且能够精确地定位边缘。
    • Canny 边缘检测的步骤包括:
      • 使用高斯滤波器对图像进行平滑处理,以减少噪声。
      • 计算图像的梯度和梯度方向。
      • 应用非极大值抑制,以消除非边缘像素。
      • 使用双阈值进行边缘检测,确定强边缘和弱边缘。
      • 利用边缘跟踪(边缘连接)算法将弱边缘连接到强边缘上,得到最终的边缘图像。
    • OpenCV 中的 cv2.Canny() 函数可用于执行 Canny 边缘检测。
    • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    Canny 边缘检测

    edges = cv2.Canny(image, threshold1=100, threshold2=200)

    显示边缘图像

    cv2.imshow('Canny Edges', edges)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2. Sobel、Scharr 等滤波器

  • Sobel、Scharr 等滤波器是常用的边缘检测滤波器,它们可以在图像中检测出水平和垂直方向上的边缘。

  • OpenCV 中的 cv2.Sobel() 函数可用于执行 Sobel 边缘检测。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    Sobel 边缘检测

    edges_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
    edges_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
    edges = cv2.magnitude(edges_x, edges_y)

    显示边缘图像

    cv2.imshow('Sobel Edges', edges.astype('uint8'))
    cv2.waitKey(0)
    cv2.destroyAllWindows()

相关推荐
封步宇AIGC8 分钟前
量化交易系统开发-实时行情自动化交易-4.2.3.指数移动平均线实现
人工智能·python·机器学习·数据挖掘
Mr.谢尔比23 分钟前
李宏毅机器学习课程知识点摘要(1-5集)
人工智能·pytorch·深度学习·神经网络·算法·机器学习·计算机视觉
我是博博啦24 分钟前
matlab例题
人工智能·算法·matlab
DieYoung_Alive30 分钟前
一篇文章了解机器学习
人工智能·机器学习
2023数学建模国赛比赛资料分享31 分钟前
2024亚太杯国际赛C题宠物预测1234问完整解题思路代码+成品参考文章
人工智能·数学建模·宠物·2024亚太杯国际赛数学建模·2024亚太杯国际赛a题·2024亚太杯国际赛数模abc·2024亚太杯数学建模
思通数科AI全行业智能NLP系统40 分钟前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
程序员小范2 小时前
孙玲:从流水线工人到谷歌程序员
人工智能·程序员·谷歌·远程工作
命里有定数2 小时前
Paper -- 洪水深度估计 -- 利用图像处理和深度神经网络绘制街道照片中的洪水深度图
图像处理·人工智能·dnn·洪水深度·高度估计
Guofu_Liao2 小时前
大语言模型中Softmax函数的计算过程及其参数描述
人工智能·语言模型·自然语言处理
非自律懒癌患者2 小时前
Transformer中的Self-Attention机制如何自然地适应于目标检测任务
人工智能·算法·目标检测