PyTorch----torch.nn.AdaptiveAvgPool2d()自适应平均池化函数

AdaptiveAvgPool2d是PyTorch中的一个模块,用于卷积神经网络(CNNs)中的自适应平均池化。它通常用于需要将输入张量的大小调整为固定大小,而不考虑其原始尺寸。

"自适应"方面是指输出大小是由用户指定的,而不是固定的。这为模型设计提供了更大的灵活性,因为池化操作可以适应不同的输入大小。

以下是AdaptiveAvgPool2d的工作原理:

**输入:**取一个形状为(N, C, H, W)的输入张量,其中N为批大小,C为通道数,H和W分别为输入特征映射的高度和宽度。

**输出大小:**与输出大小由内核大小和步数决定的传统池层不同,在AdaptiveAvgPool2d中,您可以直接指定所需的输出大小。可以将其指定为单个整数output_size(结果为正方形输出)或元组(output_height, output_width)。

**操作:**对于每个通道,AdaptiveAvgPool2d根据输出大小将输入划分为分段网格,然后计算每个分段的平均值。这个平均值成为相应的输出像素。

**输出:**输出张量具有形状(N, C, output_height, output_width)。

示例:

python 复制代码
import torch
import torch.nn as nn

# Input tensor with shape (N, C, H, W)
input_tensor = torch.randn(1, 3, 32, 32)

# Define AdaptiveAvgPool2d layer with output size (output_height, output_width)
adaptive_avg_pool = nn.AdaptiveAvgPool2d((5, 5))

# Apply AdaptiveAvgPool2d
output = adaptive_avg_pool(input_tensor)

print(output.shape)  # Output shape: (1, 3, 5, 5)

在这个例子中,AdaptiveAvgPool2d用于将输入张量的大小调整为(5,5)的固定大小,而不考虑其原始维度。这在构建输入大小变化的模型或在卷积层和完全连接层之间转换时特别有用。

相关推荐
我是Feri4 分钟前
机器学习之线性回归的特征相关性:避免“双胞胎特征“干扰模型
人工智能·机器学习
SaN-V5 分钟前
针对 OpenMMLab 视频理解(分类)的 MMAction2 的环境配置
人工智能·openmmlab·mmcv·视频理解·mmaction2
拉姆哥的小屋6 分钟前
深度学习图像分类实战:从零构建ResNet50多类别分类系统
人工智能·深度学习·分类
盼小辉丶23 分钟前
TensorFlow深度学习实战(39)——机器学习实践指南
深度学习·机器学习·tensorflow
深瞳智检23 分钟前
YOLO算法原理详解系列 第007期-YOLOv7 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
神奇的代码在哪里38 分钟前
基于【讯飞星火 Spark Lite】轻量级大语言模型的【PySide6应用】开发与实践
人工智能·大语言模型·pyside6·讯飞星火spark·spark lite
蒋星熠40 分钟前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉
qq_340474021 小时前
0.6 卷积神经网络
人工智能·神经网络·cnn·卷积神经网络
MYX_3091 小时前
第三章 神经网络
人工智能·深度学习·神经网络
大千AI助手1 小时前
学生化残差(Studentized Residual):概念、计算与应用
人工智能·回归分析·正态分布·t分布·残差·学生化残差·异方差性