PyTorch----torch.nn.AdaptiveAvgPool2d()自适应平均池化函数

AdaptiveAvgPool2d是PyTorch中的一个模块,用于卷积神经网络(CNNs)中的自适应平均池化。它通常用于需要将输入张量的大小调整为固定大小,而不考虑其原始尺寸。

"自适应"方面是指输出大小是由用户指定的,而不是固定的。这为模型设计提供了更大的灵活性,因为池化操作可以适应不同的输入大小。

以下是AdaptiveAvgPool2d的工作原理:

**输入:**取一个形状为(N, C, H, W)的输入张量,其中N为批大小,C为通道数,H和W分别为输入特征映射的高度和宽度。

**输出大小:**与输出大小由内核大小和步数决定的传统池层不同,在AdaptiveAvgPool2d中,您可以直接指定所需的输出大小。可以将其指定为单个整数output_size(结果为正方形输出)或元组(output_height, output_width)。

**操作:**对于每个通道,AdaptiveAvgPool2d根据输出大小将输入划分为分段网格,然后计算每个分段的平均值。这个平均值成为相应的输出像素。

**输出:**输出张量具有形状(N, C, output_height, output_width)。

示例:

python 复制代码
import torch
import torch.nn as nn

# Input tensor with shape (N, C, H, W)
input_tensor = torch.randn(1, 3, 32, 32)

# Define AdaptiveAvgPool2d layer with output size (output_height, output_width)
adaptive_avg_pool = nn.AdaptiveAvgPool2d((5, 5))

# Apply AdaptiveAvgPool2d
output = adaptive_avg_pool(input_tensor)

print(output.shape)  # Output shape: (1, 3, 5, 5)

在这个例子中,AdaptiveAvgPool2d用于将输入张量的大小调整为(5,5)的固定大小,而不考虑其原始维度。这在构建输入大小变化的模型或在卷积层和完全连接层之间转换时特别有用。

相关推荐
AI technophile1 小时前
OpenCV计算机视觉实战(4)——计算机视觉核心技术全解析
人工智能·opencv·计算机视觉
云和数据.ChenGuang1 小时前
人工智能 机器学习期末考试题
开发语言·人工智能·python·机器学习·毕业设计
珊珊而川2 小时前
3.1监督微调
人工智能
我是小伍同学2 小时前
基于卷积神经网络和Pyqt5的猫狗识别小程序
人工智能·python·神经网络·qt·小程序·cnn
界面开发小八哥4 小时前
界面控件DevExpress WinForms v25.1新功能预览 - 功能区组件全新升级
人工智能·.net·界面控件·winform·devexpress
zhz52144 小时前
开源数字人框架 AWESOME-DIGITAL-HUMAN 技术解析与应用指南
人工智能·ai·机器人·开源·ai编程·ai数字人·智能体
1296004524 小时前
pytorch基础的学习
人工智能·pytorch·学习
沉默媛5 小时前
RuntimeError: expected scalar type ComplexDouble but found Float
人工智能·pytorch·深度学习
契合qht53_shine5 小时前
NLP基础
人工智能·自然语言处理
闭月之泪舞5 小时前
YOLO目标检测算法
人工智能·yolo·目标检测