深度学习pytorch——2D函数优化实例(持续更新)

课程:课时46 优化问题实战_哔哩哔哩_bilibili

这就是我们今天要求的2D函数:

下图是使用python绘制出来的图像:

但是可以看出有4个最小值,但是还是不够直观,还是看课程里面给的比较好,蓝色是最低点位置:
课时46 优化问题实战_哔哩哔哩_bilibili

实际求的最小值:

代码示例:

python 复制代码
import torch
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 定义函数
def himmelblau(x):
    return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 -7)**2

# 生成X、Y数据列表
x = np.arange(-6,6,0.1)
y = np.arange(-6,6,0.1)
print('x.shape:',x.shape,';y.shape:',y.shape)
X, Y = np.meshgrid(x,y)             # 将X、Y进行网格化,将一维数组变为二维数组
print('X.map:',X.shape,';Y.map:',Y.shape)
Z = himmelblau([X,Y])                   # 计算Z

fig = plt.figure('himmelblau')          # 创建himmelblau图
ax = fig.add_subplot(projection='3d')   # 获得当前极轴

ax.plot_surface(X,Y,Z)                  # 绘制三维平面
ax.view_init(60,-30)                    # 确定视图的角度
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

# 2D函数优化
x = torch.tensor([4.,0.],requires_grad=True)        # 初始化x值,requires_grad=True代表需要梯度信息
                                                          # 可以尝试改变初始化x的值,会得到不一样的结果,因此初始化值是十分重要的
optimizer = torch.optim.Adam([x],lr=1e-3)         # 初始化优化器
for step in range(20000):
    pred = himmelblau(x)
    optimizer.zero_grad()                                 # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0
    pred.backward()                                       # 调出x、y的梯度信息
    optimizer.step()                                      # 根据优化信息更新优化的值x[0] x[1]

    if step%2000 == 0:                                    # 每2000个打印一组值
        print('step {}:x={},f(x)={}'.format(step,x.tolist(),pred.item()))
相关推荐
叶子2024225 分钟前
判断题:可再生能源发电利用率指水电、风电、太阳能、生物质能等非化石能源占一次能源消费总量的比重。 这句话为什么错误
大数据·人工智能·能源
放羊郎19 分钟前
基于ROS2的语义格栅地图导航
人工智能·slam·建图·激光slam
盼小辉丶22 分钟前
Transformer实战(24)——通过数据增强提升Transformer模型性能
人工智能·深度学习·自然语言处理·transformer
悟乙己36 分钟前
LangExtract + 知识图谱 — Google 用于 NLP 任务的新库
人工智能·自然语言处理·知识图谱
lpfasd12337 分钟前
GEO崛起与AI信任危机:数据源安全如何守护智能时代的基石?
大数据·人工智能·安全
Allen正心正念202539 分钟前
提升大语言模型性能的关键技术清单(from 网络)
人工智能·语言模型·自然语言处理
云雾J视界42 分钟前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类
拂过世俗的风1 小时前
Hopfield神经网络简介
人工智能·深度学习·神经网络
IT_陈寒1 小时前
Vue 3响应式原理深度拆解:5个90%开发者不知道的Ref与Reactive底层实现差异
前端·人工智能·后端
swanwei1 小时前
AI与电力的深度绑定:算力与能源分配的趋势分析
大数据·人工智能