深度学习pytorch——2D函数优化实例(持续更新)

课程:课时46 优化问题实战_哔哩哔哩_bilibili

这就是我们今天要求的2D函数:

下图是使用python绘制出来的图像:

但是可以看出有4个最小值,但是还是不够直观,还是看课程里面给的比较好,蓝色是最低点位置:
课时46 优化问题实战_哔哩哔哩_bilibili

实际求的最小值:

代码示例:

python 复制代码
import torch
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 定义函数
def himmelblau(x):
    return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 -7)**2

# 生成X、Y数据列表
x = np.arange(-6,6,0.1)
y = np.arange(-6,6,0.1)
print('x.shape:',x.shape,';y.shape:',y.shape)
X, Y = np.meshgrid(x,y)             # 将X、Y进行网格化,将一维数组变为二维数组
print('X.map:',X.shape,';Y.map:',Y.shape)
Z = himmelblau([X,Y])                   # 计算Z

fig = plt.figure('himmelblau')          # 创建himmelblau图
ax = fig.add_subplot(projection='3d')   # 获得当前极轴

ax.plot_surface(X,Y,Z)                  # 绘制三维平面
ax.view_init(60,-30)                    # 确定视图的角度
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

# 2D函数优化
x = torch.tensor([4.,0.],requires_grad=True)        # 初始化x值,requires_grad=True代表需要梯度信息
                                                          # 可以尝试改变初始化x的值,会得到不一样的结果,因此初始化值是十分重要的
optimizer = torch.optim.Adam([x],lr=1e-3)         # 初始化优化器
for step in range(20000):
    pred = himmelblau(x)
    optimizer.zero_grad()                                 # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0
    pred.backward()                                       # 调出x、y的梯度信息
    optimizer.step()                                      # 根据优化信息更新优化的值x[0] x[1]

    if step%2000 == 0:                                    # 每2000个打印一组值
        print('step {}:x={},f(x)={}'.format(step,x.tolist(),pred.item()))
相关推荐
لا معنى له3 分钟前
学习笔记:卷积神经网络(CNN)
人工智能·笔记·深度学习·神经网络·学习·cnn
资源补给站3 分钟前
论文13 | Nature: 数据驱动的地球系统科学的深度学习和过程理解
人工智能·深度学习
金融小师妹6 分钟前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
yumgpkpm14 分钟前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
weixin_3954489115 分钟前
迁移后的主要升级点(TDA4 相对 TDA2)
人工智能·深度学习·机器学习
光锥智能26 分钟前
罗福莉首秀,雷军的AI新战事
人工智能·深度学习·机器学习
高锰酸钾_30 分钟前
机器学习-线性回归详解
人工智能·机器学习·线性回归
无敌最俊朗@31 分钟前
音频同步:从假时钟到真时钟的蜕变
人工智能
lisw0535 分钟前
人工智能伦理的演进对科技政策有何影响?
人工智能·科技·机器学习
LYFlied37 分钟前
AI时代下的规范驱动开发:重塑前端工程实践
前端·人工智能·驱动开发·ai编程