深度学习pytorch——2D函数优化实例(持续更新)

课程:课时46 优化问题实战_哔哩哔哩_bilibili

这就是我们今天要求的2D函数:

下图是使用python绘制出来的图像:

但是可以看出有4个最小值,但是还是不够直观,还是看课程里面给的比较好,蓝色是最低点位置:
课时46 优化问题实战_哔哩哔哩_bilibili

实际求的最小值:

代码示例:

python 复制代码
import torch
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 定义函数
def himmelblau(x):
    return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 -7)**2

# 生成X、Y数据列表
x = np.arange(-6,6,0.1)
y = np.arange(-6,6,0.1)
print('x.shape:',x.shape,';y.shape:',y.shape)
X, Y = np.meshgrid(x,y)             # 将X、Y进行网格化,将一维数组变为二维数组
print('X.map:',X.shape,';Y.map:',Y.shape)
Z = himmelblau([X,Y])                   # 计算Z

fig = plt.figure('himmelblau')          # 创建himmelblau图
ax = fig.add_subplot(projection='3d')   # 获得当前极轴

ax.plot_surface(X,Y,Z)                  # 绘制三维平面
ax.view_init(60,-30)                    # 确定视图的角度
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

# 2D函数优化
x = torch.tensor([4.,0.],requires_grad=True)        # 初始化x值,requires_grad=True代表需要梯度信息
                                                          # 可以尝试改变初始化x的值,会得到不一样的结果,因此初始化值是十分重要的
optimizer = torch.optim.Adam([x],lr=1e-3)         # 初始化优化器
for step in range(20000):
    pred = himmelblau(x)
    optimizer.zero_grad()                                 # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0
    pred.backward()                                       # 调出x、y的梯度信息
    optimizer.step()                                      # 根据优化信息更新优化的值x[0] x[1]

    if step%2000 == 0:                                    # 每2000个打印一组值
        print('step {}:x={},f(x)={}'.format(step,x.tolist(),pred.item()))
相关推荐
小阿鑫几秒前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域36 分钟前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
Tiger Z1 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
GoGeekBaird1 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC2 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei4 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴9 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20259 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR10 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能