深度学习pytorch——2D函数优化实例(持续更新)

课程:课时46 优化问题实战_哔哩哔哩_bilibili

这就是我们今天要求的2D函数:

下图是使用python绘制出来的图像:

但是可以看出有4个最小值,但是还是不够直观,还是看课程里面给的比较好,蓝色是最低点位置:
课时46 优化问题实战_哔哩哔哩_bilibili

实际求的最小值:

代码示例:

python 复制代码
import torch
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 定义函数
def himmelblau(x):
    return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 -7)**2

# 生成X、Y数据列表
x = np.arange(-6,6,0.1)
y = np.arange(-6,6,0.1)
print('x.shape:',x.shape,';y.shape:',y.shape)
X, Y = np.meshgrid(x,y)             # 将X、Y进行网格化,将一维数组变为二维数组
print('X.map:',X.shape,';Y.map:',Y.shape)
Z = himmelblau([X,Y])                   # 计算Z

fig = plt.figure('himmelblau')          # 创建himmelblau图
ax = fig.add_subplot(projection='3d')   # 获得当前极轴

ax.plot_surface(X,Y,Z)                  # 绘制三维平面
ax.view_init(60,-30)                    # 确定视图的角度
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

# 2D函数优化
x = torch.tensor([4.,0.],requires_grad=True)        # 初始化x值,requires_grad=True代表需要梯度信息
                                                          # 可以尝试改变初始化x的值,会得到不一样的结果,因此初始化值是十分重要的
optimizer = torch.optim.Adam([x],lr=1e-3)         # 初始化优化器
for step in range(20000):
    pred = himmelblau(x)
    optimizer.zero_grad()                                 # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0
    pred.backward()                                       # 调出x、y的梯度信息
    optimizer.step()                                      # 根据优化信息更新优化的值x[0] x[1]

    if step%2000 == 0:                                    # 每2000个打印一组值
        print('step {}:x={},f(x)={}'.format(step,x.tolist(),pred.item()))
相关推荐
拓端研究室TRL3 分钟前
Python+AI提示词糖尿病预测融合模型:伯努利朴素贝叶斯、逻辑回归、决策树、随机森林、支持向量机SVM应用
人工智能·python·决策树·随机森林·逻辑回归
何双新16 分钟前
第8讲、Multi-Head Attention 的核心机制与实现细节
人工智能·transformer
moongoblin18 分钟前
协作赋能-1-制造业生产流程重构
大数据·人工智能·经验分享·制造
穿越光年20 分钟前
MCP实战:在扣子空间用扣子工作流MCP,一句话生成儿童故事rap视频
人工智能·音视频
Johny_Zhao41 分钟前
AI+自动化测试系统方案:网络设备与网络应用智能测试
linux·网络·人工智能·python·网络安全·docker·ai·信息安全·云计算·ansible·shell·cisco·huawei·系统运维·itsm·华三·deepseek
Quieeeet44 分钟前
【搭建Node-RED + MQTT Broker实现AI大模型交互】
人工智能·物联网·交互
想要成为计算机高手1 小时前
半成品的开源双系统VLA模型,OpenHelix-发表于2025.5.6
人工智能·深度学习·计算机视觉·自然语言处理·机器人·开源·vla
qq_368019661 小时前
人工智能、机器学习、深度学习定义与联系
人工智能·深度学习·机器学习
路溪非溪1 小时前
AI系列:智能音箱技术简析
人工智能·智能音箱
追逐☞1 小时前
机器学习(13)——LGBM(2)
人工智能·机器学习