深度学习pytorch——2D函数优化实例(持续更新)

课程:课时46 优化问题实战_哔哩哔哩_bilibili

这就是我们今天要求的2D函数:

下图是使用python绘制出来的图像:

但是可以看出有4个最小值,但是还是不够直观,还是看课程里面给的比较好,蓝色是最低点位置:
课时46 优化问题实战_哔哩哔哩_bilibili

实际求的最小值:

代码示例:

python 复制代码
import torch
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 定义函数
def himmelblau(x):
    return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 -7)**2

# 生成X、Y数据列表
x = np.arange(-6,6,0.1)
y = np.arange(-6,6,0.1)
print('x.shape:',x.shape,';y.shape:',y.shape)
X, Y = np.meshgrid(x,y)             # 将X、Y进行网格化,将一维数组变为二维数组
print('X.map:',X.shape,';Y.map:',Y.shape)
Z = himmelblau([X,Y])                   # 计算Z

fig = plt.figure('himmelblau')          # 创建himmelblau图
ax = fig.add_subplot(projection='3d')   # 获得当前极轴

ax.plot_surface(X,Y,Z)                  # 绘制三维平面
ax.view_init(60,-30)                    # 确定视图的角度
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

# 2D函数优化
x = torch.tensor([4.,0.],requires_grad=True)        # 初始化x值,requires_grad=True代表需要梯度信息
                                                          # 可以尝试改变初始化x的值,会得到不一样的结果,因此初始化值是十分重要的
optimizer = torch.optim.Adam([x],lr=1e-3)         # 初始化优化器
for step in range(20000):
    pred = himmelblau(x)
    optimizer.zero_grad()                                 # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0
    pred.backward()                                       # 调出x、y的梯度信息
    optimizer.step()                                      # 根据优化信息更新优化的值x[0] x[1]

    if step%2000 == 0:                                    # 每2000个打印一组值
        print('step {}:x={},f(x)={}'.format(step,x.tolist(),pred.item()))
相关推荐
橙汁味的风1 分钟前
1基础搜索算法
人工智能·图搜索
Dfreedom.5 分钟前
第一阶段:U-net++的概况和核心价值
人工智能·深度学习·神经网络·计算机视觉·图像分割·u-net·u-net++
weixin_462446236 分钟前
使用 Docker Compose 部署 Next-AI-Draw-IO(精简 OpenAI 兼容配置)
人工智能·docker·容器
Dfreedom.6 分钟前
循阶而上,庖丁解牛:系统学习开源 AI 模型的行动指南
人工智能·深度学习·学习·开源·图像算法
亚马逊云开发者8 分钟前
使用 Kiro AI IDE 开发 基于Amazon EMR 的Flink 智能监控系统实践
人工智能
数据光子10 分钟前
【YOLO数据集】自动驾驶
人工智能·yolo·自动驾驶
Elastic 中国社区官方博客13 分钟前
使用 Elasticsearch 中的结构化输出创建可靠的 agents
大数据·人工智能·elk·elasticsearch·搜索引擎·ai·全文检索
北京耐用通信16 分钟前
告别AGV“迷路”“断联”!耐达讯自动化PROFIBUS三路中继器,用少投入解决大麻烦
人工智能·科技·网络协议·自动化·信息与通信
xinyaozixun17 分钟前
闪极loomos系列AI眼镜重磅发布,重构日常佩戴体验,再次引领智能穿戴赛道
人工智能·重构
Hcoco_me19 分钟前
大模型面试题22:从通俗理解交叉熵公式到通用工程实现
人工智能·rnn·自然语言处理·lstm·word2vec