模拟退火算法
Matlab
%生成初始解,求目标函数f(x)=x1^2+x2^2+8在x1^2-x2>0;-x1-x2^2+2=0约束下的最小值问题
sol_new2=1;%(1)解空间(初始解)
sol_new1=2-sol_new2^2;
sol_current1 = sol_new1;
sol_best1 = sol_new1;
sol_current2 = sol_new2;
sol_best2 = sol_new2;
E_current = inf;
E_best = inf;
rand('state',sum(clock)); %初始化随机数发生器
t=90; %初始温度
tf=89.9; %结束温度
a = 0.99; %温度下降比例
while t>=tf%(7)结束条件
for r=1:1000 %退火次数
%产生随机扰动(3)新解的产生
sol_new2=sol_new2+rand*0.2;
sol_new1=2-sol_new2^2;
%检查是否满足约束
if sol_new1^2-sol_new2>=0 && -sol_new1-sol_new2^2+2==0 && sol_new1>=0 &&sol_new2>=0
else
sol_new2=rand*2;
sol_new1=2-sol_new2^2;
continue;
end
%退火过程
E_new=sol_new1^2+sol_new2^2+8;%(2)目标函数
if E_new<E_current%(5)接受准则
E_current=E_new;
sol_current1=sol_new1;
sol_current2=sol_new2;
if E_new<E_best
%把冷却过程中最好的解保存下来
E_best=E_new;
sol_best1=sol_new1;
sol_best2=sol_new2;
end
else
if rand<exp(-(E_new-E_current)/t)%(4)代价函数差
E_current=E_new;
sol_current1=sol_new1;
sol_current2=sol_new2;
else
sol_new1=sol_current1;
sol_new2=sol_current2;
end
end
plot(r,E_best,'*')
hold on
end
t=t*a;%(6)降温
end
disp('最优解为:')
disp(sol_best1)
disp(sol_best2)
disp('目标表达式的最小值等于:')
disp(E_best)
粒子群算法
基本步骤
1 找出待优化的目标函数
2 设定种群规模大小(不会设置可直接采用下方代码的)
3 替换掉下方公式即可
Matlab
%% 初始化种群
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式 % 求这个函数的最大值
figure(1);ezplot(f,[0,0.01,20]);
N = 50; % 初始种群个数
d = 1; % 空间维数
ger = 100; % 最大迭代次数
limit = [0, 20]; % 设置位置参数限制
vlimit = [-1, 1]; % 设置速度限制
w = 0.8; % 惯性权重
c1 = 0.5; % 自我学习因子
c2 = 0.5; % 群体学习因子
for i = 1:d
x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置
end
v = rand(N, d); % 初始种群的速度
xm = x; % 每个个体的历史最佳位置
ym = zeros(1, d); % 种群的历史最佳位置
fxm = zeros(N, 1); % 每个个体的历史最佳适应度
fym = -inf; % 种群历史最佳适应度
hold on
plot(xm, f(xm), 'ro');title('初始状态图');
figure(2)
%% 群体更新
iter = 1;
record = zeros(ger, 1); % 记录器
while iter <= ger
fx = f(x) ; % 个体当前适应度
for i = 1:N
if fxm(i) < fx(i)
fxm(i) = fx(i); % 更新个体历史最佳适应度
xm(i,:) = x(i,:); % 更新个体历史最佳位置
end
end
if fym < max(fxm)
[fym, nmax] = max(fxm); % 更新群体历史最佳适应度
ym = xm(nmax, :); % 更新群体历史最佳位置
end
v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新
% 边界速度处理
v(v > vlimit(2)) = vlimit(2);
v(v < vlimit(1)) = vlimit(1);
x = x + v;% 位置更新
% 边界位置处理
x(x > limit(2)) = limit(2);
x(x < limit(1)) = limit(1);
record(iter) = fym;%最大值记录
x0 = 0 : 0.01 : 20;
plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')
pause(0.1)
iter = iter+1;
end
figure(3);plot(record);title('收敛过程')
x0 = 0 : 0.01 : 20;
figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('最终状态位置')
disp(['最大值:',num2str(fym)]);
disp(['变量取值:',num2str(ym)]);