Py之scikit-learn-extra:scikit-learn-extra的简介、安装、案例应用之详细攻略

Py之scikit-learn-extra:scikit-learn-extra的简介、安装、案例应用之详细攻略

目录

scikit-learn-extra的简介

scikit-learn-extra的安装

scikit-learn-extra的案例应用

[1、使用 scikit-learn-extra 中的 IsolationForest 模型进行异常检测](#1、使用 scikit-learn-extra 中的 IsolationForest 模型进行异常检测)


scikit-learn-extra的简介

scikit-learn-extra - 与scikit-learn兼容的一组有用工具。scikit-learn-extra是一个用于机器学习的Python模块,它扩展了scikit-learn。它包括一些有用的算法,但由于其新颖性或引用数量较低等原因,不符合scikit-learn的包含标准。

scikit-learn-extra 是一个 Python 模块,用于机器学习,它扩展了 scikit-learn。与 scikit-learn 不同,scikit-learn-extra 包含一些非常有用的算法,但由于它们的新颖性或引用数量较低,不符合 scikit-learn 的包含标准。这些算法可能包括一些实验性的或者专门用于特定任务的模型。

scikit-learn-extra的安装

scikit-learn-extra需要:

Python (>=3.7)

scikit-learn (>=0.24),以及其依赖项

pip install -i https://mirrors.aliyun.com/pypi/simple scikit-learn-extra

scikit-learn-extra的案例应用

1、使用 scikit-learn-extra 中的 IsolationForest 模型进行异常检测

python 复制代码
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn_extra.ensemble import IsolationForest

# 创建一个示例数据集
X, _ = make_classification(n_samples=1000, n_features=10, n_classes=2, random_state=42)

# 将数据集分成训练集和测试集
X_train, X_test = train_test_split(X, test_size=0.2, random_state=42)

# 初始化 IsolationForest 模型
isolation_forest = IsolationForest(random_state=42)

# 在训练集上拟合模型
isolation_forest.fit(X_train)

# 使用模型进行异常检测
outliers = isolation_forest.predict(X_test)

# 打印异常检测结果
print("Outliers:", outliers)
相关推荐
进击的小小学生几秒前
机器学习连载
人工智能·机器学习
骑个小蜗牛2 分钟前
Python 标准库:random——随机数
python
Trouvaille ~12 分钟前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
是十一月末29 分钟前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
云空36 分钟前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
dowhileprogramming1 小时前
Python 中的迭代器
linux·数据库·python
0zxm2 小时前
08 Django - Django媒体文件&静态文件&文件上传
数据库·后端·python·django·sqlite
灰太狼不爱写代码4 小时前
CUDA11.4版本的Pytorch下载
人工智能·pytorch·笔记·python·学习
众拾达人5 小时前
Python爬虫(入门+进阶)
爬虫·python
bryant_meng7 小时前
【python】OpenCV—Image Moments
开发语言·python·opencv·moments·图片矩