《算法笔记》系列----质数的判断(埃氏筛法)

目录

一、朴素算法

二、埃氏筛法

1、与朴素算法对比

2、算法介绍

3、例题即代码实现


一、朴素算法

从素数的定义中可以知道,一个整数n要被判断为素数,需要判断n是否能被2.3.n- 1中的一个整除。只2,3..n- 1都不能整除n,n才能判定为素数,而只要有一个能整除n的数出现,n就可以判定为非素数。

这样的判定方法没有问题,复杂度为0(n) 。但是在很多题目中,判定素数只是整个算法

中的一部分,这时候0(n)的复杂度实际上有点大,需要更加快速的判定方法。注意到如果在

2 ~n-1中存在n的约数,不妨设为k,即n%k=0,那么由k*(n/k)=n可知,n/k也是n的一个约数,且k与n/k中一定满足其中一个小于等于sqrt(n)、另一个大于等于sqrt(n)其中sqr(n)为根号n。这启发我们,只需要判定n能否被2, 3,.. sqrt(n)中的一个整除(具中x表示对x向下取整),即可判定n县否为素数。这样的话时间复杂度就位o( sqrt(n))

代码如下:

cpp 复制代码
bool isprime(int x){
  for(int i=2;i*i<=x;i++){
     if(x%i==0){
     return false;
       }
     }
      return true;
}

这里有个东西要注意:c++中sqrt函数是对double类型的函数,但是在实际代码中传进来的一般是一个int类型的数,因此我们在使用时要像下面这样让x乘上一个1.0

cpp 复制代码
int main(){
   int x;
   cin>>x;
   ifprime(sqrt(1.0*x));
   
}

二、埃氏筛法

1、与朴素算法对比

上面这个算法在判断一个数是否是素数时时间复杂度优越,但是如果我们这个题目需要得到在这个数范围内所有的素数(素数表)时这个时间复杂度就偏大,即o(nsqrt(n))

2、算法介绍

因此我们要隆重引入我们新的算法埃氏筛法:

当需要生成一个给定范围内所有素数的素数表时,可以采用更高效的算法来降低时间复杂度。一种常见的方法是使用埃拉托斯特尼筛法(Sieve of Eratosthenes)

埃氏筛法的时间复杂度O(nlog(log(n))) ,明显优于逐个判断每个数是否为素数的**O(nsqrt(n)​)**复杂度。

埃拉托斯特尼筛法的基本思想是从2开始,依次将每个素数的倍数标记为非素数,直到遍历完整个范围。剩下未被标记的数即为素数。

整理步骤如下:

  1. 初始化一个布尔数组,表示每个数是否为素数,初始值为True。
  2. 从2开始遍历到n,对于每个素数p,将其倍数p×k(其中k>1)标记为非素数。
  3. 遍历完整个范围后,未被标记的数即为素数。

这种方法在生成素数表时能够显著减少时间复杂度,是常用的高效算法之一。

3、例题即代码实现

链接-晴问算法:https://sunnywhy.com/sfbj/5/4/205

完整ac代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int main(){
    int n;
    cin>>n;
    vector<bool> isprime(n+1,true);
    for(int i=2;i<=n;i++){
        if(isprime[i]){
            for(int j=i+i;j<=n;j+=i){
                isprime[j]=false;
            }
            cout<<i<<endl;
        }
    }
    return 0;
}
相关推荐
huangkj-henan22 分钟前
DA217应用笔记
笔记
Young_2022020224 分钟前
学习笔记——KMP
笔记·学习
ChoSeitaku26 分钟前
链表循环及差集相关算法题|判断循环双链表是否对称|两循环单链表合并成循环链表|使双向循环链表有序|单循环链表改双向循环链表|两链表的差集(C)
c语言·算法·链表
娅娅梨28 分钟前
C++ 错题本--not found for architecture x86_64 问题
开发语言·c++
DdddJMs__13531 分钟前
C语言 | Leetcode C语言题解之第557题反转字符串中的单词III
c语言·leetcode·题解
兵哥工控32 分钟前
MFC工控项目实例二十九主对话框调用子对话框设定参数值
c++·mfc
Fuxiao___35 分钟前
不使用递归的决策树生成算法
算法
我爱工作&工作love我40 分钟前
1435:【例题3】曲线 一本通 代替三分
c++·算法
秀儿还能再秀1 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
WCF向光而行1 小时前
Getting accurate time estimates from your tea(从您的团队获得准确的时间估计)
笔记·学习