SPP和SPPF的比较

SPP的结构是将输入并行通过多个不同大小的MaxPool层,然后做进一步融合,能在一定程度上解决多尺度问题。

而SPPF结构则是讲输入串行通过多个5*5的MaxPool层,这里需要注意两个5*5的MaxPool层和一个9*9的MaxPool的计算结果是一样的,而串行三个5*5的MaxPool层和一个13*13的MaxPool层计算结果是一样的。

做个实验对比一下:

复制代码
import time
import torch
import torch.nn as nn

class SPP(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool1 = nn.MaxPool2d(5, 1, padding=2)
        self.maxpool2 = nn.MaxPool2d(9, 1, padding=4)
        self.maxpool3 = nn.MaxPool2d(13, 1, padding=6)

    def forward(self, x):
        o1 = self.maxpool1(x)
        o2 = self.maxpool2(x)
        o3 = self.maxpool3(x)
        return torch.cat([x, o1, o2, o3], dim=1)
    
class SPPF(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool = nn.MaxPool2d(5, 1, padding=2)

    def forward(self, x):
        o1 = self.maxpool(x)
        o2 = self.maxpool(o1)
        o3 = self.maxpool(o2)
        return torch.cat([x, o1, o2, o3], dim=1)
    
def main():
    input_tensor = torch.rand(8, 32, 16, 16)
    spp = SPP()
    sppf = SPPF()
    output1 = spp(input_tensor)
    output2 = sppf(input_tensor)

    print(torch.equal(output1, output2))

    t_start = time.time()
    for _ in range(100):
        spp(input_tensor)
    print(f"spp time : {time.time()- t_start}")

    t_start = time.time()
    for _ in range(100):
        sppf(input_tensor)
    print(f"sppf time : {time.time()- t_start}")

if __name__== '__main__':
    main()

最终输出为:

通过对比发现,两者的计算结果是一模一样的,但是计算时间SPPF比SPP快乐两倍多。

相关推荐
飞哥数智坊3 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三3 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯4 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet6 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算6 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心6 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar7 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai7 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI8 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear9 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp