基于DBO-CNN-BiLSTM-Attention数据回归预测(多输入单输出)-附代码

DBO-CNN结合了深度学习中的卷积神经网络(CNN)和传统的Bag of Features方法。CNN用于提取图像的特征,通过多个卷积层和池化层,逐渐学习图像的层次化特征表示。然后,通过Bag of Features方法,对这些特征进行统计汇总,将图像转换成固定长度的特征向量。

实现过程如下:

  1. 数据准备:

    • 准备输入数据:对于每个输入,您需要将其准备成适当的格式。
    • 准备输出数据:将目标变量准备成模型可以理解的格式,通常是一个单一的连续值。
  2. 模型构建:

    • BiLSTM:双向长短期记忆网络可以处理序列数据,对于文本数据或时间序列数据是非常有效的。您可以构建一个BiLSTM网络来处理这类数据。
    • Attention:注意力机制可以帮助模型集中注意力于输入中最相关的部分。您可以在BiLSTM之上添加一个注意力层,以增强模型的性能。
  3. 模型结合:

    • 将各个输入模型组合起来,可以采用串联、并联或者其他方式。
    • 在模型结合的过程中,可以使用一些全连接层或其他层来整合不同输入之间的信息。
  4. 损失函数和优化器:

    • 对于回归问题,通常使用均方误差(MSE)或者其他适当的回归损失函数。
    • 优化器可以选择Adam、SGD等。
  5. 训练和评估:

    • 将数据划分为训练集、验证集和测试集。
    • 使用训练集对模型进行训练,使用验证集对模型进行调参和验证。
    • 最后,在测试集上评估模型的性能。

结果如下:

代码获取流程如下:

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZ2YlJtw
相关推荐
Christo34 分钟前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习
qq_508823405 分钟前
金融量化指标--4Sharpe夏普比率
人工智能
TMT星球19 分钟前
中国AI云市场报告:阿里云份额达35.8%,高于2至4名总和
人工智能·阿里云·云计算
Yingjun Mo24 分钟前
1. 统计推断-ALMOND收敛性分析
人工智能·算法·机器学习
小关会打代码1 小时前
计算机视觉之多模板匹配
人工智能·计算机视觉
AI 嗯啦1 小时前
计算机视觉----opencv----身份证号码识别案例
人工智能·opencv·计算机视觉
Re_Yang091 小时前
2025年统计与数据分析领域专业认证发展指南
服务器·人工智能·数据分析
西猫雷婶1 小时前
pytorch基本运算-分离计算
人工智能·pytorch·python·深度学习·神经网络·机器学习
数新网络1 小时前
PyTorch
人工智能·pytorch·python
程序员miki2 小时前
RNN循环神经网络(一):基础RNN结构、双向RNN
人工智能·pytorch·rnn·深度学习