基于DBO-CNN-BiLSTM-Attention数据回归预测(多输入单输出)-附代码

DBO-CNN结合了深度学习中的卷积神经网络(CNN)和传统的Bag of Features方法。CNN用于提取图像的特征,通过多个卷积层和池化层,逐渐学习图像的层次化特征表示。然后,通过Bag of Features方法,对这些特征进行统计汇总,将图像转换成固定长度的特征向量。

实现过程如下:

  1. 数据准备:

    • 准备输入数据:对于每个输入,您需要将其准备成适当的格式。
    • 准备输出数据:将目标变量准备成模型可以理解的格式,通常是一个单一的连续值。
  2. 模型构建:

    • BiLSTM:双向长短期记忆网络可以处理序列数据,对于文本数据或时间序列数据是非常有效的。您可以构建一个BiLSTM网络来处理这类数据。
    • Attention:注意力机制可以帮助模型集中注意力于输入中最相关的部分。您可以在BiLSTM之上添加一个注意力层,以增强模型的性能。
  3. 模型结合:

    • 将各个输入模型组合起来,可以采用串联、并联或者其他方式。
    • 在模型结合的过程中,可以使用一些全连接层或其他层来整合不同输入之间的信息。
  4. 损失函数和优化器:

    • 对于回归问题,通常使用均方误差(MSE)或者其他适当的回归损失函数。
    • 优化器可以选择Adam、SGD等。
  5. 训练和评估:

    • 将数据划分为训练集、验证集和测试集。
    • 使用训练集对模型进行训练,使用验证集对模型进行调参和验证。
    • 最后,在测试集上评估模型的性能。

结果如下:

代码获取流程如下:

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZ2YlJtw
相关推荐
Coding茶水间2 分钟前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息25 分钟前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全
Dragon水魅29 分钟前
使用 LLaMA Factory 微调一个 Qwen3-0.6B 猫娘
人工智能·语言模型
Deepoch41 分钟前
Deepoc具身模型开发板:农业机器人的“智能升级模块”革命
人工智能·科技·机器人·采摘机器人·农业机器人·具身模型·deepoc
paopao_wu43 分钟前
声音克隆与情感合成:IndexTTS2让AI语音会“演戏”
人工智能
ConardLi1 小时前
AI:我裂开了!现在的大模型评测究竟有多变态?
前端·人工智能·后端
这是你的玩具车吗1 小时前
能和爸妈讲明白的大模型原理
前端·人工智能·机器学习
产品设计大观1 小时前
6个宠物APP原型设计案例拆解:含AI问诊、商城、领养、托运
大数据·人工智能·ai·宠物·墨刀·app原型·宠物app
Codebee2 小时前
Ooder全栈框架:AI理解业务的多字段表单智能布局技术实现
人工智能
weilaikeqi11112 小时前
汪喵灵灵荣获“兴智杯”全国AI创新应用大赛一等奖,彰显AI宠物医疗硬实力
人工智能·百度·宠物