基于DBO-CNN-BiLSTM-Attention数据回归预测(多输入单输出)-附代码

DBO-CNN结合了深度学习中的卷积神经网络(CNN)和传统的Bag of Features方法。CNN用于提取图像的特征,通过多个卷积层和池化层,逐渐学习图像的层次化特征表示。然后,通过Bag of Features方法,对这些特征进行统计汇总,将图像转换成固定长度的特征向量。

实现过程如下:

  1. 数据准备:

    • 准备输入数据:对于每个输入,您需要将其准备成适当的格式。
    • 准备输出数据:将目标变量准备成模型可以理解的格式,通常是一个单一的连续值。
  2. 模型构建:

    • BiLSTM:双向长短期记忆网络可以处理序列数据,对于文本数据或时间序列数据是非常有效的。您可以构建一个BiLSTM网络来处理这类数据。
    • Attention:注意力机制可以帮助模型集中注意力于输入中最相关的部分。您可以在BiLSTM之上添加一个注意力层,以增强模型的性能。
  3. 模型结合:

    • 将各个输入模型组合起来,可以采用串联、并联或者其他方式。
    • 在模型结合的过程中,可以使用一些全连接层或其他层来整合不同输入之间的信息。
  4. 损失函数和优化器:

    • 对于回归问题,通常使用均方误差(MSE)或者其他适当的回归损失函数。
    • 优化器可以选择Adam、SGD等。
  5. 训练和评估:

    • 将数据划分为训练集、验证集和测试集。
    • 使用训练集对模型进行训练,使用验证集对模型进行调参和验证。
    • 最后,在测试集上评估模型的性能。

结果如下:

代码获取流程如下:

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZ2YlJtw
相关推荐
机器之心5 分钟前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客6 分钟前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP7 分钟前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程
油炸小波9 分钟前
02-AI应用开发平台Dify
人工智能·python·dify·coze
机器之心12 分钟前
Gemini 3深夜来袭:力压GPT 5.1,大模型谷歌时代来了
人工智能·openai
菠菠萝宝42 分钟前
【Java手搓RAGFlow】-1- 环境准备
java·开发语言·人工智能·llm·openai·rag
AndrewHZ1 小时前
【图像处理基石】如何从动漫参考图中提取色彩风格?
图像处理·人工智能·opencv·pillow·聚类算法·色彩风格·色彩分布
阿里云大数据AI技术1 小时前
PAI Physical AI Notebook详解3:基于仿真的导航模型训练
人工智能
2501_941145851 小时前
深度学习与计算机视觉在工业质检与智能检测系统中的创新应用研究
人工智能·深度学习·计算机视觉
Maynor9961 小时前
突发!Grok 4.1 刚刚发布,情商拉满,国内免费使用!
人工智能