基于DBO-CNN-BiLSTM-Attention数据回归预测(多输入单输出)-附代码

DBO-CNN结合了深度学习中的卷积神经网络(CNN)和传统的Bag of Features方法。CNN用于提取图像的特征,通过多个卷积层和池化层,逐渐学习图像的层次化特征表示。然后,通过Bag of Features方法,对这些特征进行统计汇总,将图像转换成固定长度的特征向量。

实现过程如下:

  1. 数据准备:

    • 准备输入数据:对于每个输入,您需要将其准备成适当的格式。
    • 准备输出数据:将目标变量准备成模型可以理解的格式,通常是一个单一的连续值。
  2. 模型构建:

    • BiLSTM:双向长短期记忆网络可以处理序列数据,对于文本数据或时间序列数据是非常有效的。您可以构建一个BiLSTM网络来处理这类数据。
    • Attention:注意力机制可以帮助模型集中注意力于输入中最相关的部分。您可以在BiLSTM之上添加一个注意力层,以增强模型的性能。
  3. 模型结合:

    • 将各个输入模型组合起来,可以采用串联、并联或者其他方式。
    • 在模型结合的过程中,可以使用一些全连接层或其他层来整合不同输入之间的信息。
  4. 损失函数和优化器:

    • 对于回归问题,通常使用均方误差(MSE)或者其他适当的回归损失函数。
    • 优化器可以选择Adam、SGD等。
  5. 训练和评估:

    • 将数据划分为训练集、验证集和测试集。
    • 使用训练集对模型进行训练,使用验证集对模型进行调参和验证。
    • 最后,在测试集上评估模型的性能。

结果如下:

代码获取流程如下:

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZ2YlJtw
相关推荐
用户51914958484511 分钟前
对抗性工程实践:利用AI自动化构建GitHub仓库的虚假提交历史
人工智能·aigc
riveting38 分钟前
重塑工业设备制造格局:明远智睿 T113-i 的破局之道
人工智能·物联网·制造·t113·明远智睿
zzywxc7871 小时前
详细探讨AI在金融、医疗、教育和制造业四大领域的具体落地案例,并通过代码、流程图、Prompt示例和图表等方式展示这些应用的实际效果。
开发语言·javascript·人工智能·深度学习·金融·prompt·流程图
算家计算1 小时前
32K上下文开源语音理解、40分钟深度交互——Voxtral-Small-24B-2507本地部署教程
人工智能·开源·aigc
聚客AI1 小时前
📝工程级开源:PyTorch手搓LLaMA4-MoE全栈指南
人工智能·llm·掘金·日新计划
TechubNews1 小时前
加密资产投资的六种策略:稳定币合规后的 Web3 投资和 RWA
人工智能·web3
机器之心1 小时前
7年了,OpenAI官方给出五代GPT对比,网友却怀念起「狂野」初代
人工智能·openai
后端小肥肠2 小时前
Coze+ComfyUI 实战:视频制作成本降10 倍,高质量成片这么做
人工智能·aigc·coze
爱分享的飘哥2 小时前
第七十章:告别“手写循环”噩梦!Trainer结构搭建:PyTorch Lightning让你“一键炼丹”!
人工智能·pytorch·分布式训练·lightning·accelerate·训练框架·trainer
阿里云大数据AI技术2 小时前
PAIFuser:面向图像视频的训练推理加速框架
人工智能·机器学习