计算机视觉中的NMS非极大值抑制

NMS 是"非极大抑制"(Non-Maximum Suppression)的缩写,是一种在目标检测算法中广泛使用的技术。它的主要目的是减少目标检测过程中的多余的边界框,以便只保留最佳的一个边界框。

在目标检测任务中,算法会对图像中可能出现目标的区域进行评分,并为它们生成边界框。由于多个边界框可能覆盖到同一个目标,因此需要一个方法来选择最合适的边界框。NMS 通过以下步骤实现这一目的:

  1. 选择置信度最高的边界框(即目标存在的可能性最高的边界框)。

  2. 抑制与这个边界框高度重叠的所有其他边界框。具体来说,会计算这些边界框与置信度最高的边界框的交并比(IoU),如果IoU超过某个阈值(例如0.5),则这些边界框会被认为是对同一个目标的多余检测,并因此被抑制。

  3. 从剩下的边界框中再次选择置信度最高的边界框,重复上述过程,直到所有的边界框都被处理完毕。

通过NMS,我们可以确保每个目标只被检测一次,从而提高目标检测的准确性。这一技术在各种目标检测模型如YOLO、SSD、Faster R-CNN等中都有应用。

相关推荐
AIGC_ZY7 分钟前
从LLM2Vec到语义对齐:大语言模型作为文本编码器的双重突破
人工智能·语言模型·自然语言处理
猿小羽9 分钟前
深入解析与实践:Prompt Engineering
人工智能·深度学习·ai·大模型·nlp·实践·prompt engineering
小朱笼包11 分钟前
小程序实现对接百度AI大模型,通过websocket连接进行百度实时语音识别,将返回的文字调用AI大模型API获得返回的消息内容进行文字转语音朗诵并操作
人工智能·websocket·百度·小程序·语音识别
Elastic 中国社区官方博客12 分钟前
Elasticsearch:Apache Lucene 2025 年终总结
大数据·人工智能·elasticsearch·搜索引擎·apache·lucene
deephub13 分钟前
让 Q 值估计更准确:从 DQN 到 Double DQN 的改进方案
人工智能·pytorch·深度学习·强化学习
Dyanic13 分钟前
通用图像融合方法利用梯度迁移学习与融合规则展开
人工智能·机器学习·迁移学习
IvanCodes13 分钟前
Clawdbot安装部署详细教程
人工智能·ai·agent
Yeats_Liao13 分钟前
负载均衡设计:多节点集群下的请求分发与资源调度
运维·人工智能·深度学习·机器学习·华为·负载均衡
粉色挖掘机15 分钟前
AI算子的分类及常见算子介绍
人工智能·分类·数据挖掘
2501_9481201517 分钟前
可再生能源并网预测模型
人工智能·区块链