计算机视觉中的NMS非极大值抑制

NMS 是"非极大抑制"(Non-Maximum Suppression)的缩写,是一种在目标检测算法中广泛使用的技术。它的主要目的是减少目标检测过程中的多余的边界框,以便只保留最佳的一个边界框。

在目标检测任务中,算法会对图像中可能出现目标的区域进行评分,并为它们生成边界框。由于多个边界框可能覆盖到同一个目标,因此需要一个方法来选择最合适的边界框。NMS 通过以下步骤实现这一目的:

  1. 选择置信度最高的边界框(即目标存在的可能性最高的边界框)。

  2. 抑制与这个边界框高度重叠的所有其他边界框。具体来说,会计算这些边界框与置信度最高的边界框的交并比(IoU),如果IoU超过某个阈值(例如0.5),则这些边界框会被认为是对同一个目标的多余检测,并因此被抑制。

  3. 从剩下的边界框中再次选择置信度最高的边界框,重复上述过程,直到所有的边界框都被处理完毕。

通过NMS,我们可以确保每个目标只被检测一次,从而提高目标检测的准确性。这一技术在各种目标检测模型如YOLO、SSD、Faster R-CNN等中都有应用。

相关推荐
xwz小王子4 分钟前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya5 分钟前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作
静心问道6 分钟前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型6 分钟前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
静心问道7 分钟前
SqueezeBERT:计算机视觉能为自然语言处理在高效神经网络方面带来哪些启示?
人工智能·计算机视觉·自然语言处理
Sherlock Ma7 分钟前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态
weisian15112 分钟前
人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
人工智能·语言模型·自然语言处理
DataCastle17 分钟前
第三届Bio-OS AI开源大赛启动会隆重举行
人工智能
后端小肥肠26 分钟前
躺赚必备!RPA+Coze+豆包:公众号自动发文,AI率0%亲测有效(附AI率0%提示词)
人工智能·aigc·coze
摘星编程38 分钟前
CloudBase AI ToolKit实战:从0到1开发一个智能医疗网站
人工智能·腾讯云·ai代码远征季#h5应用·ai医疗应用·cloudbase开发