计算机视觉中的NMS非极大值抑制

NMS 是"非极大抑制"(Non-Maximum Suppression)的缩写,是一种在目标检测算法中广泛使用的技术。它的主要目的是减少目标检测过程中的多余的边界框,以便只保留最佳的一个边界框。

在目标检测任务中,算法会对图像中可能出现目标的区域进行评分,并为它们生成边界框。由于多个边界框可能覆盖到同一个目标,因此需要一个方法来选择最合适的边界框。NMS 通过以下步骤实现这一目的:

  1. 选择置信度最高的边界框(即目标存在的可能性最高的边界框)。

  2. 抑制与这个边界框高度重叠的所有其他边界框。具体来说,会计算这些边界框与置信度最高的边界框的交并比(IoU),如果IoU超过某个阈值(例如0.5),则这些边界框会被认为是对同一个目标的多余检测,并因此被抑制。

  3. 从剩下的边界框中再次选择置信度最高的边界框,重复上述过程,直到所有的边界框都被处理完毕。

通过NMS,我们可以确保每个目标只被检测一次,从而提高目标检测的准确性。这一技术在各种目标检测模型如YOLO、SSD、Faster R-CNN等中都有应用。

相关推荐
吴佳浩6 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI6 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维6 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术7 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20237 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud7 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云7 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都7 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间7 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息8 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全