计算机视觉中的NMS非极大值抑制

NMS 是"非极大抑制"(Non-Maximum Suppression)的缩写,是一种在目标检测算法中广泛使用的技术。它的主要目的是减少目标检测过程中的多余的边界框,以便只保留最佳的一个边界框。

在目标检测任务中,算法会对图像中可能出现目标的区域进行评分,并为它们生成边界框。由于多个边界框可能覆盖到同一个目标,因此需要一个方法来选择最合适的边界框。NMS 通过以下步骤实现这一目的:

  1. 选择置信度最高的边界框(即目标存在的可能性最高的边界框)。

  2. 抑制与这个边界框高度重叠的所有其他边界框。具体来说,会计算这些边界框与置信度最高的边界框的交并比(IoU),如果IoU超过某个阈值(例如0.5),则这些边界框会被认为是对同一个目标的多余检测,并因此被抑制。

  3. 从剩下的边界框中再次选择置信度最高的边界框,重复上述过程,直到所有的边界框都被处理完毕。

通过NMS,我们可以确保每个目标只被检测一次,从而提高目标检测的准确性。这一技术在各种目标检测模型如YOLO、SSD、Faster R-CNN等中都有应用。

相关推荐
Wnq100724 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴4 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案4 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵4 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower4 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122464 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维5 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
大刘讲IT6 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910136 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习
是开心的栗子呀6 小时前
阿里云天池:预测二手车交易价格的机器学习项目-高效实现MAE低于500分
人工智能·机器学习·阿里云·ai·云计算