计算机视觉中的NMS非极大值抑制

NMS 是"非极大抑制"(Non-Maximum Suppression)的缩写,是一种在目标检测算法中广泛使用的技术。它的主要目的是减少目标检测过程中的多余的边界框,以便只保留最佳的一个边界框。

在目标检测任务中,算法会对图像中可能出现目标的区域进行评分,并为它们生成边界框。由于多个边界框可能覆盖到同一个目标,因此需要一个方法来选择最合适的边界框。NMS 通过以下步骤实现这一目的:

  1. 选择置信度最高的边界框(即目标存在的可能性最高的边界框)。

  2. 抑制与这个边界框高度重叠的所有其他边界框。具体来说,会计算这些边界框与置信度最高的边界框的交并比(IoU),如果IoU超过某个阈值(例如0.5),则这些边界框会被认为是对同一个目标的多余检测,并因此被抑制。

  3. 从剩下的边界框中再次选择置信度最高的边界框,重复上述过程,直到所有的边界框都被处理完毕。

通过NMS,我们可以确保每个目标只被检测一次,从而提高目标检测的准确性。这一技术在各种目标检测模型如YOLO、SSD、Faster R-CNN等中都有应用。

相关推荐
Sirius Wu几秒前
智能体开发框架选型
人工智能·aigc
人工智能技术咨询.3 分钟前
【无标题】卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能
sendnews5 分钟前
红松亮相首届厦门银博会,以一站式社区平台展示退休生活新图景
大数据·人工智能
有Li6 分钟前
一种交互式可解释人工智能方法,用于改进数字细胞病理学癌症亚型分类中的人机协作|文献速递-文献分享
大数据·论文阅读·人工智能·文献
serve the people9 分钟前
TensorFlow 中雅可比矩阵计算方式
人工智能·矩阵·tensorflow
吉吉安10 分钟前
vercel ai sdk使用指南(Nextjs版本)
人工智能·大模型·llm·nodejs·vercel
zhaodiandiandian11 分钟前
AI伦理治理:在创新与规范之间寻找平衡
人工智能
小毅&Nora17 分钟前
【人工智能】【深度学习】 ⑧ 一文讲清Transformer工作原理:从自注意力到大语言模型的革命
人工智能·深度学习·transformer
hjs_deeplearning17 分钟前
应用篇#4:Qwen2视觉语言模型(VLM)的服务器部署
服务器·人工智能·python·深度学习·语言模型
小陈phd19 分钟前
大模型从入门到精通(一)——大语言模型微调的前沿技术与应用
人工智能·语言模型·自然语言处理