pytorch | pytorch改变tensor维度的方法

pytorch 的 Tensor 类有很多方法可以用来改变 tensor 的维度。这里介绍几种常用的方法:

  • view(shape):返回一个新的 tensor,它具有给定的形状。如果元素总数不变,则可以用它来改变 tensor 的维度。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_view = t.view(3, 2)
print(t_view.shape)  # torch.Size([3, 2])
  • unsqueeze(dim):返回一个新的 tensor,它的指定位置插入了一个新的维度。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_unsqueeze = t.unsqueeze(0)
print(t_unsqueeze.shape)  # torch.Size([1, 2, 3])

t_unsqueeze = t.unsqueeze(1)
print(t_unsqueeze.shape)  # torch.Size([2, 1, 3])

t_unsqueeze = t.unsqueeze(2)
print(t_unsqueeze.shape)  # torch.Size([2, 3, 1])
  • squeeze(dim):返回一个新的 tensor,它的指定位置的维度的大小为 1 的维度被删除。例如:
bash 复制代码
import torch

t = torch.tensor([
    [[1], [2], [3]],
    [[4], [5], [6]]
])
print(t.shape)  # torch.Size([2, 3, 1])

t_squeeze = t.squeeze(2)
print(t_squeeze.shape)  # torch.Size([2, 3])

t_squeeze = t.squeeze()
print(t_squeeze.shape)  # torch.Size([2, 3])
  • transpose(dim0, dim1):返回一个新的 tensor,它的排列被交换。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_transpose = t.transpose(0, 1)
print(t_transpose.shape)  # torch.Size([3, 2])

t_transpose = t.transpose(1, 0)
print(t_transpose.shape)  # torch.Size([3, 2])

还有一些其他的方法,例如 permute() 和 contiguous(),可以用来改变 tensor 的维度。有关这些方法的更多信息,可以参考 pytorch 官方文档:https://pytorch.org/docs/stable/tensors.html。

相关推荐
lindsayshuo4 分钟前
jetson orin系列开发版安装cuda的gpu版本的opencv
人工智能·opencv
向阳逐梦4 分钟前
ROS机器视觉入门:从基础到人脸识别与目标检测
人工智能·目标检测·计算机视觉
陈鋆29 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot30 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323730 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323731 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker44 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客1 小时前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf21 小时前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉