pytorch | pytorch改变tensor维度的方法

pytorch 的 Tensor 类有很多方法可以用来改变 tensor 的维度。这里介绍几种常用的方法:

  • view(shape):返回一个新的 tensor,它具有给定的形状。如果元素总数不变,则可以用它来改变 tensor 的维度。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_view = t.view(3, 2)
print(t_view.shape)  # torch.Size([3, 2])
  • unsqueeze(dim):返回一个新的 tensor,它的指定位置插入了一个新的维度。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_unsqueeze = t.unsqueeze(0)
print(t_unsqueeze.shape)  # torch.Size([1, 2, 3])

t_unsqueeze = t.unsqueeze(1)
print(t_unsqueeze.shape)  # torch.Size([2, 1, 3])

t_unsqueeze = t.unsqueeze(2)
print(t_unsqueeze.shape)  # torch.Size([2, 3, 1])
  • squeeze(dim):返回一个新的 tensor,它的指定位置的维度的大小为 1 的维度被删除。例如:
bash 复制代码
import torch

t = torch.tensor([
    [[1], [2], [3]],
    [[4], [5], [6]]
])
print(t.shape)  # torch.Size([2, 3, 1])

t_squeeze = t.squeeze(2)
print(t_squeeze.shape)  # torch.Size([2, 3])

t_squeeze = t.squeeze()
print(t_squeeze.shape)  # torch.Size([2, 3])
  • transpose(dim0, dim1):返回一个新的 tensor,它的排列被交换。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_transpose = t.transpose(0, 1)
print(t_transpose.shape)  # torch.Size([3, 2])

t_transpose = t.transpose(1, 0)
print(t_transpose.shape)  # torch.Size([3, 2])

还有一些其他的方法,例如 permute() 和 contiguous(),可以用来改变 tensor 的维度。有关这些方法的更多信息,可以参考 pytorch 官方文档:https://pytorch.org/docs/stable/tensors.html。

相关推荐
好奇龙猫5 分钟前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习
Mr_Chenph9 分钟前
Miniconda3在Windows11上和本地Python共生
开发语言·python·miniconda3
LiFileHub18 分钟前
ISO/IEC 5338:2023中文版
人工智能
慎独41331 分钟前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能
CICI131414131 小时前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
ZzzZ314159261 小时前
【无标题】
人工智能
Hcoco_me1 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__1 小时前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang
GMICLOUD1 小时前
GMI Cloud@AI周报 | MiniMax 叩响港股大门;智谱 GLM-4.7 开源
人工智能·ai资讯
0x00071 小时前
进击的智谱 - GLM 4.7 双旦大礼
人工智能