pytorch | pytorch改变tensor维度的方法

pytorch 的 Tensor 类有很多方法可以用来改变 tensor 的维度。这里介绍几种常用的方法:

  • view(shape):返回一个新的 tensor,它具有给定的形状。如果元素总数不变,则可以用它来改变 tensor 的维度。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_view = t.view(3, 2)
print(t_view.shape)  # torch.Size([3, 2])
  • unsqueeze(dim):返回一个新的 tensor,它的指定位置插入了一个新的维度。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_unsqueeze = t.unsqueeze(0)
print(t_unsqueeze.shape)  # torch.Size([1, 2, 3])

t_unsqueeze = t.unsqueeze(1)
print(t_unsqueeze.shape)  # torch.Size([2, 1, 3])

t_unsqueeze = t.unsqueeze(2)
print(t_unsqueeze.shape)  # torch.Size([2, 3, 1])
  • squeeze(dim):返回一个新的 tensor,它的指定位置的维度的大小为 1 的维度被删除。例如:
bash 复制代码
import torch

t = torch.tensor([
    [[1], [2], [3]],
    [[4], [5], [6]]
])
print(t.shape)  # torch.Size([2, 3, 1])

t_squeeze = t.squeeze(2)
print(t_squeeze.shape)  # torch.Size([2, 3])

t_squeeze = t.squeeze()
print(t_squeeze.shape)  # torch.Size([2, 3])
  • transpose(dim0, dim1):返回一个新的 tensor,它的排列被交换。例如:
bash 复制代码
import torch

t = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])
print(t.shape)  # torch.Size([2, 3])

t_transpose = t.transpose(0, 1)
print(t_transpose.shape)  # torch.Size([3, 2])

t_transpose = t.transpose(1, 0)
print(t_transpose.shape)  # torch.Size([3, 2])

还有一些其他的方法,例如 permute() 和 contiguous(),可以用来改变 tensor 的维度。有关这些方法的更多信息,可以参考 pytorch 官方文档:https://pytorch.org/docs/stable/tensors.html。

相关推荐
请你喝好果汁641几秒前
python_竞态条件
开发语言·python
正在走向自律2 分钟前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
LuvMyLife4 分钟前
基于Win在VSCode部署运行OpenVINO模型
人工智能·深度学习·计算机视觉·openvino
fancy16616616 分钟前
力扣top100 矩阵置零
人工智能·算法·矩阵
gaosushexiangji21 分钟前
基于千眼狼高速摄像机与三色掩模的体三维粒子图像测速PIV技术
人工智能·数码相机·计算机视觉
dudly26 分钟前
Python 字典键 “三变一” 之谜
开发语言·python
小明.杨1 小时前
Django 中时区的理解
后端·python·django
中电金信1 小时前
重构金融数智化产业版图:中电金信“链主”之道
大数据·人工智能
奋斗者1号1 小时前
Docker 部署 - Crawl4AI 文档 (v0.5.x)
人工智能·爬虫·机器学习
陈奕昆1 小时前
五、【LLaMA-Factory实战】模型部署与监控:从实验室到生产的全链路实践
开发语言·人工智能·python·llama·大模型微调