pytorch中的torch.hub.load():以vggish为例

pytorch提供了torch.hub.load()函数加载模型,该方法可以从网上直接下载模型或是从本地加载模型。官方文档

cpp 复制代码
torch.hub.load(repo_or_dir, model, *args, source='github', trust_repo=None, force_reload=False, verbose=True, skip_validation=False, **kwargs)

参数说明:
repo_or_dir( string ) 如果是 'github', 这应该对应于格式为可选的ref(标记或分支),例如 'pytorch/vision:0.10'。 如果是"local",则它应该是本地目录的路径。sourcerepo_owner/repo_name[:ref]refmainmastersource
model ( string ) 在dir的hubconf.py
*args(可选)callable 的相应参数。
source ( string , optional ) 'github' 或 'local'。指定如何解释repo_or_dir。
force_reload ( bool , optional ) 是否无条件强制重新下载github repo。默认为False,即下一次直接从本地读取。
verbose ( bool , optional ) 如果False,静音有关命中本地缓存的消息。请注意,有关首次下载的消息无法静音。如果source = 'local'没有任何影响。默认为True。
skip_validation ( bool , optional ) 如果False,torchhub 将检查github参数指定的分支或提交是否正确属于 repo 所有者。这将向 GitHub API 发出请求;您可以通过设置GITHUB_TOKEN环境变量来指定非默认 GitHub 令牌 。默认为False。
**kwargs(可选) 可调用的对应kwargs。

加载vggish预训练模型

vggish模型用于音频分类模型的特征嵌入,预训练的pytorch版本:harritaylor/torchvggish,该版本的权重直接从tensorflow模型移植,因此使用"torchvggish"创建的嵌入将是相同的。

官方的加载模型示例代码:

cpp 复制代码
import torch

model = torch.hub.load('harritaylor/torchvggish', 'vggish')
model.eval()

# Download an example audio file
import urllib
url, filename = ("http://soundbible.com/grab.php?id=1698&type=wav", "bus_chatter.wav")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)

model.forward(filename)

运行这个代码块会自动从github上加载预训练的torchvggish模型和与训练权重,如果在hub里提示缺少什么包直接装就可以。

这里要提一个问题:如果在下载模型的中途中断下载,那么下次运行这个代码的时候可能会报错:

cpp 复制代码
RuntimeError: unexpected EOF, expected 198783261 more bytes. The file might be corrupted.

这个问题是说从本地加载的文件是残缺的,不完整。因为该方法会首先从本地load文件,而你之前下载的文件没下完,设置force_reload为True也没啥用,需要找到你本地下载下来的预训练模型pth文件并且删掉,就可以重新下载了。

相关推荐
hyswl6668 分钟前
2025年郑州开发小程序公司推荐
python·小程序
老友@8 分钟前
深入 Spring AI:架构与应用
人工智能·spring·ai·架构
B站计算机毕业设计之家9 分钟前
基于Python音乐推荐系统 数据分析可视化 协同过滤推荐算法 大数据(全套源码+文档)建议收藏✅
python·数据分析·推荐算法
caiyueloveclamp30 分钟前
ChatPPT:AI PPT生成领域的“六边形战士“
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
paperxie_xiexuo37 分钟前
学术与职场演示文稿的结构化生成机制探析:基于 PaperXie AI PPT 功能的流程解构与适用性研究
大数据·数据库·人工智能·powerpoint
算家计算38 分钟前
Meta第三代“分割一切”模型——SAM 3本地部署教程:首支持文本提示分割,400万概念、30毫秒响应,检测分割追踪一网打尽
人工智能·meta
用户7851278147040 分钟前
实战解析:淘宝/天猫商品描述API(taobao.item_get_desc)接口
python
CNRio42 分钟前
生成式AI技术栈全解析:从模型架构到落地工程化
人工智能·架构
算家计算43 分钟前
编程AI新王Claude Opus 4.5正式发布!编程基准突破80.9%,成本降三分之二
人工智能·ai编程·claude
codists44 分钟前
Pycharm错误:JetBrains AI URL resolution failure
python