Spark SQL DataFrame

Spark SQL DataFrame

DataFrame是一个分布式数据集合,它被组织成命名列。从概念上讲,它相当于具有良好优化技术的关系表。

DataFrame可以从不同来源的数组构造,例如Hive表,结构化数据文件,外部数据库或现有RDD。这个API是为现代大数据和数据科学应用程序设计的,Spark SQL的DataFrame设计灵感来自Python的Pandas和R语言的DataFrame数据结构。

DataFrame的特性

下面是一些DataFrame的一些特征:

  • 在单节点集群或者大集群,处理KB到PB级别的数据。
  • 支持不同的数据格式(Avro,csv,ElasticSearch和Cassandra)和存储系统(HDFS,HIVE表,mysql等)。
  • Spark SQL Catalyst 优化器。
  • 可以通过Spark-Core轻松地与所有大数据工具和框架集成。
  • 提供Python,Java,Scala和R等语言API。

SparkSession

SparkSession是一个入口类,用于初始化Spark SQL的功能。

以下命令用于通过spark-shell初始化SparkSession。

复制代码
$ spark-shell

使用以下命令创建SQLContext。

复制代码
scala> import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SparkSession
scala> val spark=SparkSession
.builder()
.appName("My Spark SQL")
.getOrCreate()
19/04/25 14:40:31 WARN sql.SparkSession$Builder: Using an existing SparkSession; some configuration may not take effect.
spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@560465ea
scala> import spark.implicits._
import spark.implicits._

spark.implicits._主要用来隐式转换的,比如Rdd转DataFrame

DataFrame基本操作

DataFrame为结构化数据操作提供了一个领域特定的语言(domain-specific language)。下面会提供一些DataFrame操作结构化数据的基本示例。

读取json文件并创建DataFrame,SQLContext.read.json方法返回的就是DataFrame。

复制代码
scala> val dfs = spark.read.json("hdfs:/tmp/employee.json")
dfs: org.apache.spark.sql.DataFrame = [age: string, id: string ... 1 more field]

注意 :要先把employee.json文件上传到hdfs的tmp目录下。
hdfs dfs -put employee.json /tmp

employee.json内容如下:

复制代码
[{"id" : "1201", "name" : "satish", "age" : "25"},
{"id" : "1202", "name" : "krishna", "age" : "28"},
{"id" : "1203", "name" : "amith", "age" : "39"},
{"id" : "1204", "name" : "javed", "age" : "23"},
{"id" : "1205", "name" : "prudvi", "age" : "23"}]

返回数据将会以age、id、name三个字段展示。

复制代码
dfs: org.apache.spark.sql.DataFrame = [age: string, id: string, name: string]

查看DataFrame数据。

复制代码
scala> dfs.show()
+---+----+-------+
|age|  id|   name|
+---+----+-------+
| 25|1201| satish|
| 28|1202|krishna|
| 39|1203|  amith|
| 23|1204|  javed|
| 23|1205| prudvi|
+---+----+-------+

使用printSchema方法查看DataFrame的数据模式。

复制代码
scala> dfs.printSchema()
root
 |-- age: string (nullable = true)
 |-- id: string (nullable = true)
 |-- name: string (nullable = true)

使用select()函数查看某个列的数据。

复制代码
scala> dfs.select("name").show()
+-------+
|   name|
+-------+
| satish|
|krishna|
|  amith|
|  javed|
| prudvi|
+-------+

filter函数查找年龄大于23(age> 23)的雇员。

复制代码
scala> dfs.filter(dfs("age")>23).show()
+---+----+-------+
|age|  id|   name|
+---+----+-------+
| 25|1201| satish|
| 28|1202|krishna|
| 39|1203|  amith|
+---+----+-------+

使用groupBy方法计算同一年龄的员工人数。类似SQL里面的group by语句。

复制代码
scala> dfs.groupBy("age").count().show()
+---+-----+
|age|count|
+---+-----+
| 28|    1|
| 23|    2|
| 25|    1|
| 39|    1|
+---+-----+
相关推荐
Elastic 中国社区官方博客1 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
点控云3 小时前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心
风清再凯4 小时前
04_es原理&filebeat使用
大数据·elasticsearch·搜索引擎
小小王app小程序开发4 小时前
盲盒小程序开发新视角:从用户体验到运营落地的分析拆解
大数据·ux
笔生花6 小时前
【实战-12】flink版本表
数据库·sql·flink
weixin_525936336 小时前
部分Spark SQL编程要点
大数据·python·sql·spark
wan5555cn7 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
板凳坐着晒太阳9 小时前
Flink 作业通用优化方案
大数据·flink
DokiDoki之父9 小时前
数据库—数据库设计 & 多表查询 & 事务
数据库·sql
武子康10 小时前
Java-151 深入浅出 MongoDB 索引详解 性能优化:慢查询分析 索引调优 快速定位并解决慢查询
java·开发语言·数据库·sql·mongodb·性能优化·nosql