【数字图像处理】改变图像灰度级别

改变图像灰度级别

首先,对原始图像 O O O进行灰度级量化:

q = int ⁡ ( O 2 i ) × 2 i , q=\operatorname{int}\left(\frac{O}{2^{i}}\right) \times 2^{i}, q=int(2iO)×2i,

灰度级别256,128,64,32,16,8,4,2 对应 i = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 i=0,1,2,3,4,5,6,7 i=0,1,2,3,4,5,6,7。

例如,

  • 灰度级别为2时,原始图像中属于[0,128)的值被量化为0,属于[128, 256)的值被量化为128。

  • 灰度级别为4时,原始图像中属于[0, 64)的值被量化为0,属于[64,128)的值被量化为64,属于[128,192)的值被量化为128,属于[192, 256)的值被量化为192.

然后将灰度值范围变换到[0,255]:

q = int ⁡ ( 255 × q max ⁡ ( O ) ) . q=\operatorname{int}\left(255 \times \frac{q}{\max (O)}\right). q=int(255×max(O)q).

cpp 复制代码
import cv2 as cv
import numpy as np

img = cv.imread('blurry_moon.tif', cv.IMREAD_GRAYSCALE)


print(np.max(img))
# 灰度级别: 256、128、64、32;16、8、4、2
for i in range(8):
    img_q = (img / (2 ** i)).astype(np.uint8) # 保留前8-i比特
    img_q = img_q * (2 ** i)
    img_q=img_q / np.max(img_q) * 255  # [0-255]
    img_q=img_q.astype(np.uint8)

    cv.imwrite('level{}.jpg'.format(i), img_q)

思考:改变图像灰度级别与压缩量化的区别?

相关推荐
冰西瓜60021 小时前
深度学习的数学原理(十一)—— CNN:二维卷积的数学本质与图像特征提取
人工智能·深度学习·cnn
飞哥数智坊21 小时前
春节没顾上追新模型?17款新品一文速览
人工智能·llm
陈天伟教授21 小时前
人工智能应用- 人工智能交叉:04. 安芬森理论
人工智能
光的方向_1 天前
ChatGPT提示工程入门 Prompt 03-迭代式提示词开发
人工智能·chatgpt·prompt·aigc
盼小辉丶1 天前
PyTorch实战(29)——使用TorchServe部署PyTorch模型
人工智能·pytorch·深度学习·模型部署
郝学胜-神的一滴1 天前
在Vibe Coding时代,学习设计模式与软件架构
人工智能·学习·设计模式·架构·软件工程
AI英德西牛仔1 天前
AI输出无乱码
人工智能
艾醒(AiXing-w)1 天前
技术速递——通义千问 3.5 深度横评:纸面超越 GPT‑5.2,实测差距在哪?
人工智能·python·语言模型
xiangzhihong81 天前
Gemini 3.1 Pro血洗Claude与GPT,12项基准测试第一!
人工智能
爱跑步的程序员~1 天前
Spring AI会话记忆使用与底层实现
人工智能·spring