【数字图像处理】改变图像灰度级别

改变图像灰度级别

首先,对原始图像 O O O进行灰度级量化:

q = int ⁡ ( O 2 i ) × 2 i , q=\operatorname{int}\left(\frac{O}{2^{i}}\right) \times 2^{i}, q=int(2iO)×2i,

灰度级别256,128,64,32,16,8,4,2 对应 i = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 i=0,1,2,3,4,5,6,7 i=0,1,2,3,4,5,6,7。

例如,

  • 灰度级别为2时,原始图像中属于[0,128)的值被量化为0,属于[128, 256)的值被量化为128。

  • 灰度级别为4时,原始图像中属于[0, 64)的值被量化为0,属于[64,128)的值被量化为64,属于[128,192)的值被量化为128,属于[192, 256)的值被量化为192.

然后将灰度值范围变换到[0,255]:

q = int ⁡ ( 255 × q max ⁡ ( O ) ) . q=\operatorname{int}\left(255 \times \frac{q}{\max (O)}\right). q=int(255×max(O)q).

cpp 复制代码
import cv2 as cv
import numpy as np

img = cv.imread('blurry_moon.tif', cv.IMREAD_GRAYSCALE)


print(np.max(img))
# 灰度级别: 256、128、64、32;16、8、4、2
for i in range(8):
    img_q = (img / (2 ** i)).astype(np.uint8) # 保留前8-i比特
    img_q = img_q * (2 ** i)
    img_q=img_q / np.max(img_q) * 255  # [0-255]
    img_q=img_q.astype(np.uint8)

    cv.imwrite('level{}.jpg'.format(i), img_q)

思考:改变图像灰度级别与压缩量化的区别?

相关推荐
良策金宝AI7 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据7 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi777777 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔8 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)8 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家8 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata8 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub9 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19919 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann