LangChain - classes

文章目录


说明

LangChain 发展越来越大,但从范例难以窥全貌,这样学起来云里雾里。

这里整理了它的类,方便查看使用。

基于 0.1.13 版本


官方文档:https://python.langchain.com/docs/get_started/introduction

API 文档:https://api.python.langchain.com/en/latest/langchain_api_reference.html#


langchain

python 复制代码
help(langchain) 

PACKAGE CONTENTS

  • _api (package)
  • adapters (package) w
  • agents (package)
  • base_language
  • cache
  • callbacks (package)
  • chains (package)
  • chat_loaders (package)
  • chat_models (package)
  • docstore (package)
  • document_loaders (package)
  • document_transformers (package)
  • embeddings (package)
  • env
  • evaluation (package)
  • example_generator
  • formatting
  • globals (package)
  • graphs (package)
  • hub
  • indexes (package)
  • input
  • llms (package)
  • load (package)
  • memory (package)
  • model_laboratory
  • output_parsers (package)
  • prompts (package)
  • pydantic_v1 (package)
  • python
  • requests
  • retrievers (package)
  • runnables (package)
  • schema (package)
  • serpapi
  • smith (package)
  • sql_database
  • storage (package)
  • text_splitter
  • tools (package)
  • utilities (package)
  • utils (package)
  • vectorstores (package)

agents


PACKAGE CONTENTS

  • agent
  • agent_iterator
  • agent_toolkits (package)
  • agent_types
  • chat (package)
  • conversational (package)
  • conversational_chat (package)
  • format_scratchpad (package)
  • initialize
  • json_chat (package)
  • load_tools
  • loading
  • mrkl (package)
  • openai_assistant (package)
  • openai_functions_agent (package)
  • openai_functions_multi_agent (package)
  • openai_tools (package)
  • output_parsers (package)
  • react (package)
  • schema
  • self_ask_with_search (package)
  • structured_chat (package)
  • tools
  • types
  • utils
  • xml (package)

CLASSES

  • builtins.object
    • langchain.agents.agent_iterator.AgentExecutorIterator
  • builtins.str(builtins.object)
    • langchain.agents.agent_types.AgentType(builtins.str, enum.Enum)
  • enum.Enum(builtins.object)
    • langchain.agents.agent_types.AgentType(builtins.str, enum.Enum)
  • langchain.agents.react.base.ReActDocstoreAgent(langchain.agents.agent.Agent)
    • langchain.agents.react.base.ReActTextWorldAgent
  • langchain.chains.base.Chain(langchain_core.runnables.base.RunnableSerializable, abc.ABC)
    • langchain.agents.agent.AgentExecutor
      • langchain.agents.mrkl.base.MRKLChain
      • langchain.agents.react.base.ReActChain
      • langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain
  • langchain_core.output_parsers.base.BaseOutputParser(langchain_core.output_parsers.base.BaseLLMOutputParser, langchain_core.runnables.base.RunnableSerializable)
    • langchain.agents.agent.AgentOutputParser
  • langchain_core.tools.BaseTool(langchain_core.runnables.base.RunnableSerializable)
    • langchain_core.tools.Tool
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain.agents.agent.BaseMultiActionAgent
      • langchain.agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent
    • langchain.agents.agent.BaseSingleActionAgent
      • langchain.agents.agent.Agent
        • langchain.agents.conversational.base.ConversationalAgent
        • langchain.agents.conversational_chat.base.ConversationalChatAgent
        • langchain.agents.mrkl.base.ZeroShotAgent
        • langchain.agents.structured_chat.base.StructuredChatAgent
      • langchain.agents.agent.LLMSingleActionAgent
      • langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent
      • langchain.agents.xml.base.XMLAgent

cache

Help on module langchain.cache in langchain:


CLASSES

  • langchain_community.cache._RedisCacheBase(langchain_core.caches.BaseCache, abc.ABC)
    • langchain_community.cache.RedisCache
  • langchain_core.caches.BaseCache(abc.ABC)
    • langchain_community.cache.AstraDBCache
    • langchain_community.cache.AstraDBSemanticCache
    • langchain_community.cache.CassandraCache
    • langchain_community.cache.CassandraSemanticCache
    • langchain_community.cache.GPTCache
    • langchain_community.cache.InMemoryCache
    • langchain_community.cache.MomentoCache
    • langchain_community.cache.RedisSemanticCache
    • langchain_community.cache.SQLAlchemyCache
      • langchain_community.cache.SQLiteCache
    • langchain_community.cache.SQLAlchemyMd5Cache
    • langchain_community.cache.UpstashRedisCache
  • sqlalchemy.orm.decl_api.Base(builtins.object)
    • langchain_community.cache.FullLLMCache
    • langchain_community.cache.FullMd5LLMCache

callbacks

Help on package langchain.callbacks in langchain:


NAME

langchain.callbacks -Callback handlers allow listening to events in LangChain.


DESCRIPTION


Class hierarchy:

... code-block::

​ BaseCallbackHandler --> CallbackHandler # Example: AimCallbackHandler


PACKAGE CONTENTS

  • aim_callback
  • argilla_callback
  • arize_callback
  • arthur_callback
  • base
  • clearml_callback
  • comet_ml_callback
  • confident_callback
  • context_callback
  • file
  • flyte_callback
  • human
  • infino_callback
  • labelstudio_callback
  • llmonitor_callback
  • manager
  • mlflow_callback
  • openai_info
  • promptlayer_callback
  • sagemaker_callback
  • stdout
  • streaming_aiter
  • streaming_aiter_final_only
  • streaming_stdout
  • streaming_stdout_final_only
  • streamlit (package)
  • tracers (package)
  • trubrics_callback
  • utils
  • wandb_callback
  • whylabs_callback

CLASSES

  • langchain_core.callbacks.base.AsyncCallbackHandler(langchain_core.callbacks.base.BaseCallbackHandler)
    • langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler
  • langchain_core.callbacks.base.BaseCallbackHandler(langchain_core.callbacks.base.LLMManagerMixin, langchain_core.callbacks.base.ChainManagerMixin, langchain_core.callbacks.base.ToolManagerMixin, langchain_core.callbacks.base.RetrieverManagerMixin, langchain_core.callbacks.base.CallbackManagerMixin, langchain_core.callbacks.base.RunManagerMixin)
    • langchain.callbacks.file.FileCallbackHandler
    • langchain_core.callbacks.stdout.StdOutCallbackHandler
    • langchain_core.callbacks.streaming_stdout.StreamingStdOutCallbackHandler
      • langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler
  • langchain_core.tracers.base.BaseTracer(langchain_core.callbacks.base.BaseCallbackHandler, abc.ABC)
    • langchain_core.tracers.langchain.LangChainTracer

memory


PACKAGE CONTENTS

  • buffer
  • buffer_window
  • chat_memory
  • chat_message_histories (package)
  • combined
  • entity
  • kg
  • motorhead_memory
  • prompt
  • readonly
  • simple
  • summary
  • summary_buffer
  • token_buffer
  • utils
  • vectorstore
  • zep_memory

CLASSES

  • langchain.memory.chat_memory.BaseChatMemory(langchain_core.memory.BaseMemory, abc.ABC)
    • langchain.memory.buffer.ConversationBufferMemory
      • langchain.memory.zep_memory.ZepMemory
    • langchain.memory.buffer_window.ConversationBufferWindowMemory
    • langchain.memory.entity.ConversationEntityMemory
    • langchain.memory.kg.ConversationKGMemory
    • langchain.memory.motorhead_memory.MotorheadMemory
    • langchain.memory.summary.ConversationSummaryMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
    • langchain.memory.summary_buffer.ConversationSummaryBufferMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
    • langchain.memory.token_buffer.ConversationTokenBufferMemory
  • langchain.memory.entity.BaseEntityStore (pydantic.v1.main.BaseModel, abc.ABC)
    • langchain.memory.entity.InMemoryEntityStore
    • langchain.memory.entity.RedisEntityStore
    • langchain.memory.entity.SQLiteEntityStore
    • langchain.memory.entity.UpstashRedisEntityStore
  • langchain.memory.summary.SummarizerMixin(pydantic.v1.main.BaseModel)
    • langchain.memory.summary.ConversationSummaryMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
    • langchain.memory.summary_buffer.ConversationSummaryBufferMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
  • langchain_core.chat_history.BaseChatMessageHistory (abc.ABC)
    • langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory
    • langchain_community.chat_message_histories.cassandra.CassandraChatMessageHistory
    • langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory
    • langchain_community.chat_message_histories.dynamodb.DynamoDBChatMessageHistory
    • langchain_community.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory
    • langchain_community.chat_message_histories.file.FileChatMessageHistory
    • langchain_community.chat_message_histories.in_memory.ChatMessageHistory(langchain_core.chat_history.BaseChatMessageHistory, pydantic.v1.main.BaseModel)
    • langchain_community.chat_message_histories.momento.MomentoChatMessageHistory
    • langchain_community.chat_message_histories.mongodb.MongoDBChatMessageHistory
    • langchain_community.chat_message_histories.postgres.PostgresChatMessageHistory
    • langchain_community.chat_message_histories.redis.RedisChatMessageHistory
    • langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory
    • langchain_community.chat_message_histories.sql.SQLChatMessageHistory
    • langchain_community.chat_message_histories.streamlit.StreamlitChatMessageHistory
    • langchain_community.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory
    • langchain_community.chat_message_histories.xata.XataChatMessageHistory
    • langchain_community.chat_message_histories.zep.ZepChatMessageHistory
  • langchain_core.memory.BaseMemory(langchain_core.load.serializable.Serializable, abc.ABC)
    • langchain.memory.buffer.ConversationStringBufferMemory
    • langchain.memory.combined.CombinedMemory
    • langchain.memory.readonly.ReadOnlySharedMemory
    • langchain.memory.simple.SimpleMemory
    • langchain.memory.vectorstore.VectorStoreRetrieverMemory
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain_community.chat_message_histories.in_memory.ChatMessageHistory(langchain_core.chat_history.BaseChatMessageHistory, pydantic.v1.main.BaseModel)


PACKAGE CONTENTS

  • amadeus (package)
  • arxiv (package)
  • base
  • bearly (package)
  • bing_search (package)
  • brave_search (package)
  • clickup (package)
  • convert_to_openai
  • dataforseo_api_search (package)
  • ddg_search (package)
  • e2b_data_analysis (package)
  • edenai (package)
  • eleven_labs (package)
  • file_management (package)
  • github (package)
  • gitlab (package)
  • gmail (package)
  • golden_query (package)
  • google_cloud (package)
  • google_finance (package)
  • google_jobs (package)
  • google_lens (package)
  • google_places (package)
  • google_scholar (package)
  • google_search (package)
  • google_trends (package)
  • graphql (package)
  • human (package)
  • ifttt
  • interaction (package)
  • jira (package)
  • json (package)
  • memorize (package)
  • merriam_webster (package)
  • metaphor_search (package)
  • multion (package)
  • nasa (package)
  • nuclia (package)
  • office365 (package)
  • openapi (package)
  • openweathermap (package)
  • playwright (package)
  • plugin
  • powerbi (package)
  • pubmed (package)
  • python (package)
  • reddit_search (package)
  • render
  • requests (package)
  • retriever
  • scenexplain (package)
  • searchapi (package)
  • searx_search (package)
  • shell (package)
  • slack (package)
  • sleep (package)
  • spark_sql (package)
  • sql_database (package)
  • stackexchange (package)
  • steam (package)
  • steamship_image_generation (package)
  • tavily_search (package)
  • vectorstore (package)
  • wikipedia (package)
  • wolfram_alpha (package)
  • yahoo_finance_news
  • youtube (package)
  • zapier (package)

CLASSES

  • langchain_core.runnables.base.RunnableSerializable(langchain_core.load.serializable.Serializable, langchain_core.runnables.base.Runnable)
    • langchain_core.tools.BaseTool
      • langchain_core.tools.StructuredTool
      • langchain_core.tools.Tool

chat_loaders

Load chat messages from various communications platforms such as Facebook Messenger, Telegram, and WhatsApp. The loaded chat messages can be used for fine-tuning models.


Class hierarchy:

... code-block::

​ BaseChatLoader --> ChatLoader # Examples: WhatsAppChatLoader, IMessageChatLoader


Main helpers:

... code-block::

​ ChatSession


PACKAGE CONTENTS

  • base
  • facebook_messenger
  • gmail
  • imessage
  • langsmith
  • slack
  • telegram
  • utils
  • whatsapp

chat_models


NAME

langchain.chat_models -Chat Models are a variation on language models.


DESCRIPTION

While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.


Class hierarchy:

... code-block::

​ BaseLanguageModel --> BaseChatModel --> # Examples: ChatOpenAI, ChatGooglePalm


Main helpers:

... code-block::

​ AIMessage, BaseMessage, HumanMessage


PACKAGE CONTENTS

  • anthropic
  • anyscale
  • azure_openai
  • azureml_endpoint
  • baichuan
  • baidu_qianfan_endpoint
  • base
  • bedrock
  • cohere
  • databricks
  • ernie
  • everlyai
  • fake
  • fireworks
  • gigachat
  • google_palm
  • human
  • hunyuan
  • javelin_ai_gateway
  • jinachat
  • konko
  • litellm
  • meta
  • minimax
  • mlflow
  • mlflow_ai_gateway
  • ollama
  • openai
  • pai_eas_endpoint
  • promptlayer_openai
  • tongyi
  • vertexai
  • volcengine_maas
  • yandex

docstore

Help on package langchain.docstore in langchain:


NAME

langchain.docstore -Docstores are classes to store and load Documents.


DESCRIPTION

The Docstore is a simplified version of the Document Loader.


Class hierarchy:

... code-block::

​ Docstore --> # Examples: InMemoryDocstore, Wikipedia


Main helpers:

... code-block::

​ Document, AddableMixin


PACKAGE CONTENTS

  • arbitrary_fn
  • base
  • document
  • in_memory
  • wikipedia

document_loaders

shell 复制代码
help(langchain_community.document_loaders) 

PACKAGE CONTENTS

  • acreom
  • airbyte
  • airbyte_json
  • airtable
  • apify_dataset
  • arcgis_loader
  • arxiv
  • assemblyai
  • astradb
  • async_html
  • athena
  • azlyrics
  • azure_ai_data
  • azure_blob_storage_container
  • azure_blob_storage_file
  • baiducloud_bos_directory
  • baiducloud_bos_file
  • base
  • base_o365
  • bibtex
  • bigquery
  • bilibili
  • blackboard
  • blob_loaders (package)
  • blockchain
  • brave_search
  • browserless
  • cassandra
  • chatgpt
  • chm
  • chromium
  • college_confidential
  • concurrent
  • confluence
  • conllu
  • couchbase
  • csv_loader
  • cube_semantic
  • datadog_logs
  • dataframe
  • diffbot
  • directory
  • discord
  • doc_intelligence
  • docugami
  • docusaurus
  • dropbox
  • duckdb_loader
  • email
  • epub
  • etherscan
  • evernote
  • excel
  • facebook_chat
  • fauna
  • figma
  • gcs_directory
  • gcs_file
  • generic
  • geodataframe
  • git
  • gitbook
  • github
  • google_speech_to_text
  • googledrive
  • gutenberg
  • helpers
  • hn
  • html
  • html_bs
  • hugging_face_dataset
  • hugging_face_model
  • ifixit
  • image
  • image_captions
  • imsdb
  • iugu
  • joplin
  • json_loader
  • lakefs
  • larksuite
  • markdown
  • mastodon
  • max_compute
  • mediawikidump
  • merge
  • mhtml
  • modern_treasury
  • mongodb
  • news
  • notebook
  • notion
  • notiondb
  • nuclia
  • obs_directory
  • obs_file
  • obsidian
  • odt
  • onedrive
  • onedrive_file
  • onenote
  • open_city_data
  • org_mode
  • parsers (package)
  • pdf
  • pebblo
  • polars_dataframe
  • powerpoint
  • psychic
  • pubmed
  • pyspark_dataframe
  • python
  • quip
  • readthedocs
  • recursive_url_loader
  • reddit
  • roam
  • rocksetdb
  • rspace
  • rss
  • rst
  • rtf
  • s3_directory
  • s3_file
  • sharepoint
  • sitemap
  • slack_directory
  • snowflake_loader
  • spreedly
  • sql_database
  • srt
  • stripe
  • surrealdb
  • telegram
  • tencent_cos_directory
  • tencent_cos_file
  • tensorflow_datasets
  • text
  • tidb
  • tomarkdown
  • toml
  • trello
  • tsv
  • twitter
  • unstructured
  • url
  • url_playwright
  • url_selenium
  • vsdx
  • weather
  • web_base
  • whatsapp_chat
  • wikipedia
  • word_document
  • xml
  • xorbits
  • youtube
  • yuque

document_transformers


PACKAGE CONTENTS

  • beautiful_soup_transformer
  • doctran_text_extract
  • doctran_text_qa
  • doctran_text_translate
  • embeddings_redundant_filter
  • google_translate
  • html2text
  • long_context_reorder
  • nuclia_text_transform
  • openai_functions

embeddings


PACKAGE CONTENTS

  • aleph_alpha
  • awa
  • azure_openai
  • baidu_qianfan_endpoint
  • base
  • bedrock
  • bookend
  • cache
  • clarifai
  • cloudflare_workersai
  • cohere
  • dashscope
  • databricks
  • deepinfra
  • edenai
  • elasticsearch
  • embaas
  • ernie
  • fake
  • fastembed
  • google_palm
  • gpt4all
  • gradient_ai
  • huggingface
  • huggingface_hub
  • infinity
  • javelin_ai_gateway
  • jina
  • johnsnowlabs
  • llamacpp
  • llm_rails
  • localai
  • minimax
  • mlflow
  • mlflow_gateway
  • modelscope_hub
  • mosaicml
  • nlpcloud
  • octoai_embeddings
  • ollama
  • openai
  • sagemaker_endpoint
  • self_hosted
  • self_hosted_hugging_face
  • sentence_transformer
  • spacy_embeddings
  • tensorflow_hub
  • vertexai
  • voyageai
  • xinference

CLASSES

  • langchain_core.embeddings.Embeddings(abc.ABC)
    • langchain.embeddings.cache.CacheBackedEmbeddings

evaluation


NAME

langchain.evaluation -Evaluation chains for grading LLM and Chain outputs.


DESCRIPTION

This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as language models and chains.

Loading an evaluator to load an evaluator, you can use the :func:load_evaluators <langchain.evaluation.loading.load_evaluators> or

:func:load_evaluator <langchain.evaluation.loading.load_evaluator> functions with the

names of the evaluators to load.

... code-block:: python

​ from langchain.evaluation import load_evaluator

​ evaluator = load_evaluator("qa")

​ evaluator.evaluate_strings(

​ prediction="We sold more than 40,000 units last week",

​ input="How many units did we sell last week?",

​ reference="We sold 32,378 units",

​ )

The evaluator must be one of :class:EvaluatorType <langchain.evaluation.schema.EvaluatorType>.

Datasets to load one of the LangChain HuggingFace datasets, you can use the :func:load_dataset <langchain.evaluation.loading.load_dataset> function with the name of the dataset to load.

... code-block:: python

​ from langchain.evaluation import load_dataset

​ ds = load_dataset("llm-math")

Some common use cases for evaluation include:

  • Grading the accuracy of a response against ground truth answers: :class:QAEvalChain <langchain.evaluation.qa.eval_chain.QAEvalChain>
  • Comparing the output of two models: :class:PairwiseStringEvalChain <langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain> or :class:LabeledPairwiseStringEvalChain <langchain.evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain> when there is additionally a reference label.
  • Judging the efficacy of an agent's tool usage: :class:TrajectoryEvalChain <langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain>
  • Checking whether an output complies with a set of criteria: :class:CriteriaEvalChain <langchain.evaluation.criteria.eval_chain.CriteriaEvalChain> or :class:LabeledCriteriaEvalChain <langchain.evaluation.criteria.eval_chain.LabeledCriteriaEvalChain> when there is additionally a reference label.
  • Computing semantic difference between a prediction and reference: :class:EmbeddingDistanceEvalChain <langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain> or between two predictions: :class:PairwiseEmbeddingDistanceEvalChain <langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain>
  • Measuring the string distance between a prediction and reference :class:StringDistanceEvalChain <langchain.evaluation.string_distance.base.StringDistanceEvalChain> or between two predictions :class:PairwiseStringDistanceEvalChain <langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain>

Low-level API

These evaluators implement one of the following interfaces:

  • :class:StringEvaluator <langchain.evaluation.schema.StringEvaluator>: Evaluate a prediction string against a reference label and/or input context.
  • :class:PairwiseStringEvaluator <langchain.evaluation.schema.PairwiseStringEvaluator>: Evaluate two prediction strings against each other. Useful for scoring preferences, measuring similarity between two chain or llm agents, or comparing outputs on similar inputs.
  • :class:AgentTrajectoryEvaluator <langchain.evaluation.schema.AgentTrajectoryEvaluator> Evaluate the full sequence of actions taken by an agent.

These interfaces enable easier composability and usage within a higher level evaluation framework.


PACKAGE CONTENTS

  • agents (package)
  • comparison (package)
  • criteria (package)
  • embedding_distance (package)
  • exact_match (package)
  • loading
  • parsing (package)
  • qa (package)
  • regex_match (package)
  • schema
  • scoring (package)
  • string_distance (package)

CLASSES

  • abc.ABC(builtins.object)
    • langchain.evaluation.schema.AgentTrajectoryEvaluator(langchain.evaluation.schema._EvalArgsMixin, abc.ABC)
      • langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain(langchain.evaluation.schema.AgentTrajectoryEvaluator, langchain.evaluation.schema.LLMEvalChain)
    • langchain.evaluation.schema.PairwiseStringEvaluator(langchain.evaluation.schema._EvalArgsMixin, abc.ABC)
      • langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain(langchain.evaluation.schema.PairwiseStringEvaluator, langchain.evaluation.schema.LLMEvalChain, langchain.chains.llm.LLMChain)
        • langchain.evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain
      • langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain(langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin, langchain.evaluation.schema.PairwiseStringEvaluator)
      • langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain(langchain.evaluation.schema.PairwiseStringEvaluator, langchain.evaluation.string_distance.base._RapidFuzzChainMixin)
    • langchain.evaluation.schema.StringEvaluator(langchain.evaluation.schema._EvalArgsMixin, abc.ABC)
      • langchain.evaluation.criteria.eval_chain.CriteriaEvalChain(langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain, langchain.chains.llm.LLMChain)
        • langchain.evaluation.criteria.eval_chain.LabeledCriteriaEvalChain
      • langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain(langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin, langchain.evaluation.schema.StringEvaluator)
      • langchain.evaluation.exact_match.base.ExactMatchStringEvaluator
      • langchain.evaluation.parsing.base.JsonEqualityEvaluator
      • langchain.evaluation.parsing.base.JsonValidityEvaluator
      • langchain.evaluation.parsing.json_distance.JsonEditDistanceEvaluator
      • langchain.evaluation.parsing.json_schema.JsonSchemaEvaluator
      • langchain.evaluation.qa.eval_chain.ContextQAEvalChain(langchain.chains.llm.LLMChain, langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain)
        • langchain.evaluation.qa.eval_chain.CotQAEvalChain
      • langchain.evaluation.qa.eval_chain.QAEvalChain(langchain.chains.llm.LLMChain, langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain)
      • langchain.evaluation.regex_match.base.RegexMatchStringEvaluator
      • langchain.evaluation.scoring.eval_chain.ScoreStringEvalChain(langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain, langchain.chains.llm.LLMChain)
        • langchain.evaluation.scoring.eval_chain.LabeledScoreStringEvalChain
      • langchain.evaluation.string_distance.base.StringDistanceEvalChain(langchain.evaluation.schema.StringEvaluator, langchain.evaluation.string_distance.base._RapidFuzzChainMixin)
  • builtins.str(builtins.object)
    • langchain.evaluation.criteria.eval_chain.Criteria(builtins.str, enum.Enum)
    • langchain.evaluation.embedding_distance.base.EmbeddingDistance(builtins.str, enum.Enum)
    • langchain.evaluation.schema.EvaluatorType(builtins.str, enum.Enum)
    • langchain.evaluation.string_distance.base.StringDistance(builtins.str, enum.Enum)
  • enum.Enum(builtins.object)
    • langchain.evaluation.criteria.eval_chain.Criteria(builtins.str, enum.Enum)
    • langchain.evaluation.embedding_distance.base.EmbeddingDistance(builtins.str, enum.Enum)
    • langchain.evaluation.schema.EvaluatorType(builtins.str, enum.Enum)
    • langchain.evaluation.string_distance.base.StringDistance(builtins.str, enum.Enum)
  • langchain.chains.llm.LLMChain(langchain.chains.base.Chain)
    • langchain.evaluation.qa.eval_chain.ContextQAEvalChain(langchain.chains.llm.LLMChain, langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain)
      • langchain.evaluation.qa.eval_chain.CotQAEvalChain
    • langchain.evaluation.qa.eval_chain.QAEvalChain(langchain.chains.llm.LLMChain, langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain)
  • langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin(langchain.chains.base.Chain)
    • langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain(langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin, langchain.evaluation.schema.StringEvaluator)
    • langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain(langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin, langchain.evaluation.schema.PairwiseStringEvaluator)
  • langchain.evaluation.schema._EvalArgsMixin(builtins.object)
    • langchain.evaluation.schema.AgentTrajectoryEvaluator(langchain.evaluation.schema._EvalArgsMixin, abc.ABC)
      • langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain(langchain.evaluation.schema.AgentTrajectoryEvaluator, langchain.evaluation.schema.LLMEvalChain)
    • langchain.evaluation.schema.PairwiseStringEvaluator(langchain.evaluation.schema._EvalArgsMixin, abc.ABC)
      • langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain(langchain.evaluation.schema.PairwiseStringEvaluator, langchain.evaluation.schema.LLMEvalChain, langchain.chains.llm.LLMChain)
        • langchain.evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain
      • langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain(langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin, langchain.evaluation.schema.PairwiseStringEvaluator)
      • langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain(langchain.evaluation.schema.PairwiseStringEvaluator, langchain.evaluation.string_distance.base._RapidFuzzChainMixin)
    • langchain.evaluation.schema.StringEvaluator(langchain.evaluation.schema._EvalArgsMixin, abc.ABC)
      • langchain.evaluation.criteria.eval_chain.CriteriaEvalChain(langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain, langchain.chains.llm.LLMChain)
        • langchain.evaluation.criteria.eval_chain.LabeledCriteriaEvalChain
      • langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain(langchain.evaluation.embedding_distance.base._EmbeddingDistanceChainMixin, langchain.evaluation.schema.StringEvaluator)
      • langchain.evaluation.exact_match.base.ExactMatchStringEvaluator
      • langchain.evaluation.parsing.base.JsonEqualityEvaluator
      • langchain.evaluation.parsing.base.JsonValidityEvaluator
      • langchain.evaluation.parsing.json_distance.JsonEditDistanceEvaluator
      • langchain.evaluation.parsing.json_schema.JsonSchemaEvaluator
      • langchain.evaluation.qa.eval_chain.ContextQAEvalChain(langchain.chains.llm.LLMChain, langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain)
        • langchain.evaluation.qa.eval_chain.CotQAEvalChain
      • langchain.evaluation.qa.eval_chain.QAEvalChain(langchain.chains.llm.LLMChain, langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain)
      • langchain.evaluation.regex_match.base.RegexMatchStringEvaluator
      • langchain.evaluation.scoring.eval_chain.ScoreStringEvalChain(langchain.evaluation.schema.StringEvaluator, langchain.evaluation.schema.LLMEvalChain, langchain.chains.llm.LLMChain)
        • langchain.evaluation.scoring.eval_chain.LabeledScoreStringEvalChain
      • langchain.evaluation.string_distance.base.StringDistanceEvalChain(langchain.evaluation.schema.StringEvaluator, langchain.evaluation.string_distance.base._RapidFuzzChainMixin)

graphs

Help on package langchain.graphs in langchain:


NAME

langchain.graphs -Graphs provide a natural language interface to graph databases.


PACKAGE CONTENTS

  • arangodb_graph
  • falkordb_graph
  • graph_document
  • graph_store
  • hugegraph
  • kuzu_graph
  • memgraph_graph
  • nebula_graph
  • neo4j_graph
  • neptune_graph
  • networkx_graph
  • rdf_graph

indexes

Help on package langchain.indexes in langchain:


NAME

langchain.indexes


DESCRIPTION

Index is used to avoid writing duplicated content into the vectostore and to avoid over-writing content if it's unchanged.

Indexes also :

  • Create knowledge graphs from data.

  • Support indexing workflows from LangChain data loaders to vectorstores.

    Importantly, Index keeps on working even if the content being written is derived via a set of transformations from some source content (e.g., indexing children

    documents that were derived from parent documents by chunking.)


PACKAGE CONTENTS

  • _api
  • _sql_record_manager
  • base
  • graph
  • prompts (package)
  • vectorstore

CLASSES

  • builtins.dict(builtins.object)
    • langchain.indexes._api.IndexingResult
  • langchain.indexes.base.RecordManager(abc.ABC)
    • langchain.indexes._sql_record_manager.SQLRecordManager
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain.indexes.graph.GraphIndexCreator
    • langchain.indexes.vectorstore.VectorstoreIndexCreator

llms

Help on package langchain.llms in langchain:


NAME

langchain.llms


DESCRIPTION

LLM classes provide access to the large language model (LLM) APIs and services.


Class hierarchy:

... code-block::

​ BaseLanguageModel --> BaseLLM --> LLM --> # Examples: AI21, HuggingFaceHub, OpenAI


Main helpers:

... code-block::

​ LLMResult, PromptValue,

​ CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun,

​ CallbackManager, AsyncCallbackManager,

​ AIMessage, BaseMessage


PACKAGE CONTENTS

  • ai21
  • aleph_alpha
  • amazon_api_gateway
  • anthropic
  • anyscale
  • arcee
  • aviary
  • azureml_endpoint
  • baidu_qianfan_endpoint
  • bananadev
  • base
  • baseten
  • beam
  • bedrock
  • bittensor
  • cerebriumai
  • chatglm
  • clarifai
  • cloudflare_workersai
  • cohere
  • ctransformers
  • ctranslate2
  • databricks
  • deepinfra
  • deepsparse
  • edenai
  • fake
  • fireworks
  • forefrontai
  • gigachat
  • google_palm
  • gooseai
  • gpt4all
  • gradient_ai
  • huggingface_endpoint
  • huggingface_hub
  • huggingface_pipeline
  • huggingface_text_gen_inference
  • human
  • javelin_ai_gateway
  • koboldai
  • llamacpp
  • loading
  • manifest
  • minimax
  • mlflow
  • mlflow_ai_gateway
  • modal
  • mosaicml
  • nlpcloud
  • octoai_endpoint
  • ollama
  • opaqueprompts
  • openai
  • openllm
  • openlm
  • pai_eas_endpoint
  • petals
  • pipelineai
  • predibase
  • predictionguard
  • promptlayer_openai
  • replicate
  • rwkv
  • sagemaker_endpoint
  • self_hosted
  • self_hosted_hugging_face
  • stochasticai
  • symblai_nebula
  • textgen
  • titan_takeoff
  • titan_takeoff_pro
  • together
  • tongyi
  • utils
  • vertexai
  • vllm
  • volcengine_maas
  • watsonxllm
  • writer
  • xinference
  • yandex

load

Help on package langchain.load in langchain:


NAME

langchain.load - Serialization and deserialization.


PACKAGE CONTENTS

  • dump
  • load
  • serializable

memory

Help on package langchain.memory in langchain:

NAME

langchain.memory -Memory maintains Chain state, incorporating context from

past runs.

DESCRIPTION
Class hierarchy for Memory:

.. code-block::

    BaseMemory --> BaseChatMemory --> <name>Memory  # Examples: ZepMemory, MotorheadMemory

Main helpers:

​ ... code-block::

​ BaseChatMessageHistory

Chat Message History stores the chat message history in different stores.

Class hierarchy for ChatMessageHistory:

... code-block::

BaseChatMessageHistory --> ChatMessageHistory # Example: ZepChatMessageHistory


Main helpers:

​ ... code-block::

​ AIMessage, BaseMessage, HumanMessage


PACKAGE CONTENTS

  • buffer
  • buffer_window
  • chat_memory
  • chat_message_histories (package)
  • combined
  • entity
  • kg
  • motorhead_memory
  • prompt
  • readonly
  • simple
  • summary
  • summary_buffer
  • token_buffer
  • utils
  • vectorstore
  • zep_memory

CLASSES

  • langchain.memory.chat_memory.BaseChatMemory(langchain_core.memory.BaseMemory, abc.ABC)
    • langchain.memory.buffer.ConversationBufferMemory
      • langchain.memory.zep_memory.ZepMemory
    • langchain.memory.buffer_window.ConversationBufferWindowMemory
    • langchain.memory.entity.ConversationEntityMemory
    • langchain.memory.kg.ConversationKGMemory
    • langchain.memory.motorhead_memory.MotorheadMemory
    • langchain.memory.summary.ConversationSummaryMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
    • langchain.memory.summary_buffer.ConversationSummaryBufferMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
    • langchain.memory.token_buffer.ConversationTokenBufferMemory
  • langchain.memory.entity.BaseEntityStore(pydantic.v1.main.BaseModel, abc.ABC)
    • langchain.memory.entity.InMemoryEntityStore
    • langchain.memory.entity.RedisEntityStore
    • langchain.memory.entity.SQLiteEntityStore
    • langchain.memory.entity.UpstashRedisEntityStore
  • langchain.memory.summary.SummarizerMixin(pydantic.v1.main.BaseModel)
    • langchain.memory.summary.ConversationSummaryMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
    • langchain.memory.summary_buffer.ConversationSummaryBufferMemory(langchain.memory.chat_memory.BaseChatMemory, langchain.memory.summary.SummarizerMixin)
  • langchain_core.chat_history.BaseChatMessageHistory(abc.ABC)
    • langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory
    • langchain_community.chat_message_histories.cassandra.CassandraChatMessageHistory
    • langchain_community.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory
    • langchain_community.chat_message_histories.dynamodb.DynamoDBChatMessageHistory
    • langchain_community.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory
    • langchain_community.chat_message_histories.file.FileChatMessageHistory
    • langchain_community.chat_message_histories.in_memory.ChatMessageHistory(langchain_core.chat_history.BaseChatMessageHistory, pydantic.v1.main.BaseModel)
    • langchain_community.chat_message_histories.momento.MomentoChatMessageHistory
    • langchain_community.chat_message_histories.mongodb.MongoDBChatMessageHistory
    • langchain_community.chat_message_histories.postgres.PostgresChatMessageHistory
    • langchain_community.chat_message_histories.redis.RedisChatMessageHistory
    • langchain_community.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory
    • langchain_community.chat_message_histories.sql.SQLChatMessageHistory
    • langchain_community.chat_message_histories.streamlit.StreamlitChatMessageHistory
    • langchain_community.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory
    • langchain_community.chat_message_histories.xata.XataChatMessageHistory
    • langchain_community.chat_message_histories.zep.ZepChatMessageHistory
  • langchain_core.memory.BaseMemory(langchain_core.load.serializable.Serializable, abc.ABC)
    • langchain.memory.buffer.ConversationStringBufferMemory
    • langchain.memory.combined.CombinedMemory
    • langchain.memory.readonly.ReadOnlySharedMemory
    • langchain.memory.simple.SimpleMemory
    • langchain.memory.vectorstore.VectorStoreRetrieverMemory
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain_community.chat_message_histories.in_memory.ChatMessageHistory(langchain_core.chat_history.BaseChatMessageHistory, pydantic.v1.main.BaseModel)

output_parsers

Help on package langchain.output_parsers in langchain:


NAME

langchain.output_parsers -OutputParser classes parse the output of an LLM call.


DESCRIPTION

Class hierarchy:

... code-block::

​ BaseLLMOutputParser --> BaseOutputParser --> OutputParser # ListOutputParser, PydanticOutputParser

Main helpers:

... code-block::

​ Serializable, Generation, PromptValue


PACKAGE CONTENTS

  • boolean
  • combining
  • datetime
  • enum
  • ernie_functions
  • fix
  • format_instructions
  • json
  • list
  • loading
  • openai_functions
  • openai_tools
  • pandas_dataframe
  • prompts
  • pydantic
  • rail_parser
  • regex
  • regex_dict
  • retry
  • structured
  • xml
  • yaml

CLASSES

  • langchain_core.output_parsers.base.BaseOutputParser(langchain_core.output_parsers.base.BaseLLMOutputParser, langchain_core.runnables.base.RunnableSerializable)
    • langchain.output_parsers.boolean.BooleanOutputParser
    • langchain.output_parsers.combining.CombiningOutputParser
    • langchain.output_parsers.datetime.DatetimeOutputParser
    • langchain.output_parsers.enum.EnumOutputParser
    • langchain.output_parsers.fix.OutputFixingParser
    • langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser
    • langchain.output_parsers.regex.RegexParser
    • langchain.output_parsers.regex_dict.RegexDictParser
    • langchain.output_parsers.retry.RetryOutputParser
    • langchain.output_parsers.retry.RetryWithErrorOutputParser
    • langchain.output_parsers.structured.StructuredOutputParser
    • langchain.output_parsers.yaml.YamlOutputParser
    • langchain_community.output_parsers.rail_parser.GuardrailsOutputParser
  • langchain_core.output_parsers.json.JsonOutputParser(langchain_core.output_parsers.transform.BaseCumulativeTransformOutputParser)
    • langchain_core.output_parsers.pydantic.PydanticOutputParser(langchain_core.output_parsers.json.JsonOutputParser, typing.Generic)
  • langchain_core.output_parsers.transform.BaseCumulativeTransformOutputParser(langchain_core.output_parsers.transform.BaseTransformOutputParser)
    • langchain_core.output_parsers.openai_tools.JsonOutputToolsParser
      • langchain_core.output_parsers.openai_tools.JsonOutputKeyToolsParser
      • langchain_core.output_parsers.openai_tools.PydanticToolsParser
  • langchain_core.output_parsers.transform.BaseTransformOutputParser(langchain_core.output_parsers.base.BaseOutputParser)
    • langchain_core.output_parsers.list.ListOutputParser
      • langchain_core.output_parsers.list.CommaSeparatedListOutputParser
      • langchain_core.output_parsers.list.MarkdownListOutputParser
      • langchain_core.output_parsers.list.NumberedListOutputParser
    • langchain_core.output_parsers.xml.XMLOutputParser
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain.output_parsers.structured.ResponseSchema
  • typing.Generic(builtins.object)
    • langchain_core.output_parsers.pydantic.PydanticOutputParser(langchain_core.output_parsers.json.JsonOutputParser, typing.Generic)

prompts

Help on package langchain.prompts in langchain:


NAME

langchain.prompts -Prompt is the input to the model.


DESCRIPTION

Prompt is often constructed from multiple components. Prompt classes and functions make constructing and working with prompts easy.


Class hierarchy:

  • BasePromptTemplate
    • PipelinePromptTemplate
    • StringPromptTemplate
      • PromptTemplate
      • FewShotPromptTemplate
      • FewShotPromptWithTemplates
    • BaseChatPromptTemplate
      • AutoGPTPrompt
      • ChatPromptTemplate
        • AgentScratchPadChatPromptTemplate
  • BaseMessagePromptTemplate
    • MessagesPlaceholder
    • BaseStringMessagePromptTemplate
      • ChatMessagePromptTemplate
      • HumanMessagePromptTemplate
      • AIMessagePromptTemplate
      • SystemMessagePromptTemplate
  • PromptValue
    • StringPromptValue
    • ChatPromptValue

PACKAGE CONTENTS

  • base
  • chat
  • example_selector (package)
  • few_shot
  • few_shot_with_templates
  • loading
  • pipeline
  • prompt

CLASSES

  • abc.ABC(builtins.object)
    • langchain_core.prompts.base.BasePromptTemplate(langchain_core.runnables.base.RunnableSerializable, typing.Generic, abc.ABC)
      • langchain_core.prompts.chat.BaseChatPromptTemplate(langchain_core.prompts.base.BasePromptTemplate, abc.ABC)
        • langchain_core.prompts.chat.ChatPromptTemplate
        • langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate(langchain_core.prompts.chat.BaseChatPromptTemplate, langchain_core.prompts.few_shot._FewShotPromptTemplateMixin)
      • langchain_core.prompts.pipeline.PipelinePromptTemplate
      • langchain_core.prompts.string.StringPromptTemplate(langchain_core.prompts.base.BasePromptTemplate, abc.ABC)
        • langchain_core.prompts.few_shot.FewShotPromptTemplate(langchain_core.prompts.few_shot._FewShotPromptTemplateMixin, langchain_core.prompts.string.StringPromptTemplate)
        • langchain_core.prompts.few_shot_with_templates.FewShotPromptWithTemplates
        • langchain_core.prompts.prompt.PromptTemplate
  • langchain_core.example_selectors.base.BaseExampleSelector(abc.ABC)
    • langchain_community.example_selectors.ngram_overlap.NGramOverlapExampleSelector(langchain_core.example_selectors.base.BaseExampleSelector, pydantic.v1.main.BaseModel)
    • langchain_core.example_selectors.length_based.LengthBasedExampleSelector(langchain_core.example_selectors.base.BaseExampleSelector, pydantic.v1.main.BaseModel)
    • langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector(langchain_core.example_selectors.base.BaseExampleSelector, pydantic.v1.main.BaseModel)
      • langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector
  • langchain_core.prompts.chat.BaseMessagePromptTemplate(langchain_core.load.serializable.Serializable, abc.ABC)
    • langchain_core.prompts.chat.MessagesPlaceholder
  • langchain_core.prompts.chat.BaseStringMessagePromptTemplate(langchain_core.prompts.chat.BaseMessagePromptTemplate, abc.ABC)
    • langchain_core.prompts.chat.ChatMessagePromptTemplate
  • langchain_core.prompts.chat._StringImageMessagePromptTemplate(langchain_core.prompts.chat.BaseMessagePromptTemplate)
    • langchain_core.prompts.chat.AIMessagePromptTemplate
    • langchain_core.prompts.chat.HumanMessagePromptTemplate
    • langchain_core.prompts.chat.SystemMessagePromptTemplate
  • langchain_core.prompts.few_shot._FewShotPromptTemplateMixin(pydantic.v1.main.BaseModel)
    • langchain_core.prompts.few_shot.FewShotPromptTemplate(langchain_core.prompts.few_shot._FewShotPromptTemplateMixin, langchain_core.prompts.string.StringPromptTemplate)
  • langchain_core.runnables.base.RunnableSerializable(langchain_core.load.serializable.Serializable, langchain_core.runnables.base.Runnable)
    • langchain_core.prompts.base.BasePromptTemplate(langchain_core.runnables.base.RunnableSerializable, typing.Generic, abc.ABC)
      • langchain_core.prompts.chat.BaseChatPromptTemplate(langchain_core.prompts.base.BasePromptTemplate, abc.ABC)
        • langchain_core.prompts.chat.ChatPromptTemplate
        • langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate(langchain_core.prompts.chat.BaseChatPromptTemplate, langchain_core.prompts.few_shot._FewShotPromptTemplateMixin)
      • langchain_core.prompts.pipeline.PipelinePromptTemplate
      • langchain_core.prompts.string.StringPromptTemplate(langchain_core.prompts.base.BasePromptTemplate, abc.ABC)
        • langchain_core.prompts.few_shot.FewShotPromptTemplate(langchain_core.prompts.few_shot._FewShotPromptTemplateMixin, langchain_core.prompts.string.StringPromptTemplate)
        • langchain_core.prompts.few_shot_with_templates.FewShotPromptWithTemplates
        • langchain_core.prompts.prompt.PromptTemplate
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain_community.example_selectors.ngram_overlap.NGramOverlapExampleSelector(langchain_core.example_selectors.base.BaseExampleSelector, pydantic.v1.main.BaseModel)
    • langchain_core.example_selectors.length_based.LengthBasedExampleSelector(langchain_core.example_selectors.base.BaseExampleSelector, pydantic.v1.main.BaseModel)
    • langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector(langchain_core.example_selectors.base.BaseExampleSelector, pydantic.v1.main.BaseModel)
      • langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector
  • typing.Generic(builtins.object)
    • langchain_core.prompts.base.BasePromptTemplate(langchain_core.runnables.base.RunnableSerializable, typing.Generic, abc.ABC)
      • langchain_core.prompts.chat.BaseChatPromptTemplate(langchain_core.prompts.base.BasePromptTemplate, abc.ABC)
        • langchain_core.prompts.chat.ChatPromptTemplate
        • langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate(langchain_core.prompts.chat.BaseChatPromptTemplate, langchain_core.prompts.few_shot._FewShotPromptTemplateMixin)
      • langchain_core.prompts.pipeline.PipelinePromptTemplate
      • langchain_core.prompts.string.StringPromptTemplate(langchain_core.prompts.base.BasePromptTemplate, abc.ABC)
        • langchain_core.prompts.few_shot.FewShotPromptTemplate(langchain_core.prompts.few_shot._FewShotPromptTemplateMixin, langchain_core.prompts.string.StringPromptTemplate)
        • langchain_core.prompts.few_shot_with_templates.FewShotPromptWithTemplates
        • langchain_core.prompts.prompt.PromptTemplate

retrievers

Help on package langchain.retrievers in langchain:


NAME

langchain.retrievers -Retriever class returns Documents given a textquery.


DESCRIPTION

It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used as the backbone of a retriever, but there are other types of retrievers as well.


Class hierarchy:

... code-block::

​ BaseRetriever --> Retriever # Examples: ArxivRetriever, MergerRetriever

Main helpers:

... code-block::

​ Document, Serializable, Callbacks, CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun


PACKAGE CONTENTS

  • arcee
  • arxiv
  • azure_cognitive_search
  • bedrock
  • bm25
  • chaindesk
  • chatgpt_plugin_retriever
  • cohere_rag_retriever
  • contextual_compression
  • databerry
  • docarray
  • document_compressors (package)
  • elastic_search_bm25
  • embedchain
  • ensemble
  • google_cloud_documentai_warehouse
  • google_vertex_ai_search
  • kay
  • kendra
  • knn
  • llama_index
  • merger_retriever
  • metal
  • milvus
  • multi_query
  • multi_vector
  • outline
  • parent_document_retriever
  • pinecone_hybrid_search
  • pubmed
  • pupmed
  • re_phraser
  • remote_retriever
  • self_query (package)
  • svm
  • tavily_search_api
  • tfidf
  • time_weighted_retriever
  • vespa_retriever
  • weaviate_hybrid_search
  • web_research
  • wikipedia
  • you
  • zep
  • zilliz

CLASSES

  • langchain_community.utilities.outline.OutlineAPIWrapper(pydantic.v1.main.BaseModel)
    • langchain_community.retrievers.outline.OutlineRetriever(langchain_core.retrievers.BaseRetriever, langchain_community.utilities.outline.OutlineAPIWrapper)
  • langchain_core.retrievers.BaseRetriever(langchain_core.runnables.base.RunnableSerializable, abc.ABC)
    • langchain.retrievers.contextual_compression.ContextualCompressionRetriever
    • langchain.retrievers.ensemble.EnsembleRetriever
    • langchain.retrievers.merger_retriever.MergerRetriever
    • langchain.retrievers.multi_query.MultiQueryRetriever
    • langchain.retrievers.multi_vector.MultiVectorRetriever
      • langchain.retrievers.parent_document_retriever.ParentDocumentRetriever
    • langchain.retrievers.re_phraser.RePhraseQueryRetriever
    • langchain.retrievers.self_query.base.SelfQueryRetriever
    • langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever
    • langchain.retrievers.web_research.WebResearchRetriever
    • langchain_community.retrievers.outline.OutlineRetriever(langchain_core.retrievers.BaseRetriever, langchain_community.utilities.outline.OutlineAPIWrapper)

runnables

Help on package langchain.runnables in langchain:


NAME

langchain.runnables - LangChainRunnable and the LangChain Expression Language (LCEL).


DESCRIPTION

The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs.

Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations.

Support forasync allows servers hosting the LCEL based programs to scale better for higher concurrent loads.


Batch operations allow for processing multiple inputs in parallel.

Streaming of intermediate outputs, as they're being generated, allows for creating more responsive UX.

This module contains non-core Runnable classes.


PACKAGE CONTENTS

  • hub
  • openai_functions

schema

Help on package langchain.schema in langchain:


NAME

langchain.schema -Schemas are the LangChain Base Classes and Interfaces.


PACKAGE CONTENTS

  • agent
  • cache
  • callbacks (package)
  • chat
  • chat_history
  • document
  • embeddings
  • exceptions
  • language_model
  • memory
  • messages
  • output
  • output_parser
  • prompt
  • prompt_template
  • retriever
  • runnable (package)
  • storage
  • vectorstore

CLASSES

  • abc.ABC(builtins.object)
    • langchain_core.caches.BaseCache
    • langchain_core.chat_history.BaseChatMessageHistory
    • langchain_core.documents.transformers.BaseDocumentTransformer
    • langchain_core.memory.BaseMemory(langchain_core.load.serializable.Serializable, abc.ABC)
    • langchain_core.output_parsers.base.BaseLLMOutputParser(typing.Generic, abc.ABC)
      • langchain_core.output_parsers.base.BaseOutputParser(langchain_core.output_parsers.base.BaseLLMOutputParser, langchain_core.runnables.base.RunnableSerializable)
    • langchain_core.prompt_values.PromptValue(langchain_core.load.serializable.Serializable, abc.ABC)
    • langchain_core.prompts.base.BasePromptTemplate(langchain_core.runnables.base.RunnableSerializable, typing.Generic, abc.ABC)
    • langchain_core.retrievers.BaseRetriever(langchain_core.runnables.base.RunnableSerializable, abc.ABC)
    • langchain_core.stores.BaseStore(typing.Generic, abc.ABC)
  • builtins.Exception(builtins.BaseException)
    • langchain_core.exceptions.LangChainException
      • langchain_core.exceptions.OutputParserException(builtins.ValueError, langchain_core.exceptions.LangChainException)
  • builtins.ValueError(builtins.Exception)
    • langchain_core.exceptions.OutputParserException(builtins.ValueError, langchain_core.exceptions.LangChainException)
  • langchain_core.load.serializable.Serializable(pydantic.v1.main.BaseModel, abc.ABC)
    • langchain_core.agents.AgentAction
    • langchain_core.agents.AgentFinish
    • langchain_core.documents.base.Document
    • langchain_core.memory.BaseMemory(langchain_core.load.serializable.Serializable, abc.ABC)
    • langchain_core.messages.base.BaseMessage
      • langchain_core.messages.ai.AIMessage
      • langchain_core.messages.chat.ChatMessage
      • langchain_core.messages.function.FunctionMessage
      • langchain_core.messages.human.HumanMessage
      • langchain_core.messages.system.SystemMessage
    • langchain_core.outputs.generation.Generation
      • langchain_core.outputs.chat_generation.ChatGeneration
    • langchain_core.prompt_values.PromptValue(langchain_core.load.serializable.Serializable, abc.ABC)
  • langchain_core.output_parsers.transform.BaseTransformOutputParser(langchain_core.output_parsers.base.BaseOutputParser)
    • langchain_core.output_parsers.string.StrOutputParser
  • langchain_core.runnables.base.RunnableSerializable(langchain_core.load.serializable.Serializable, langchain_core.runnables.base.Runnable)
    • langchain_core.prompts.base.BasePromptTemplate(langchain_core.runnables.base.RunnableSerializable, typing.Generic, abc.ABC)
    • langchain_core.retrievers.BaseRetriever(langchain_core.runnables.base.RunnableSerializable, abc.ABC)
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain_core.outputs.chat_result.ChatResult
    • langchain_core.outputs.llm_result.LLMResult
    • langchain_core.outputs.run_info.RunInfo
  • typing.Generic(builtins.object)
    • langchain_core.output_parsers.base.BaseLLMOutputParser(typing.Generic, abc.ABC)
      • langchain_core.output_parsers.base.BaseOutputParser(langchain_core.output_parsers.base.BaseLLMOutputParser, langchain_core.runnables.base.RunnableSerializable)
    • langchain_core.prompts.base.BasePromptTemplate(langchain_core.runnables.base.RunnableSerializable, typing.Generic, abc.ABC)
    • langchain_core.stores.BaseStore(typing.Generic, abc.ABC)

smith

Help on package langchain.smith in langchain:


NAME

langchain.smith -LangSmith utilities.


DESCRIPTION

This module provides utilities for connecting to LangSmith <https://smith.langchain.com/>.

For more information on LangSmith, see the LangSmith documentation <https://docs.smith.langchain.com/>_.


PACKAGE CONTENTS

  • evaluation (package)

ClassES

  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain.smith.evaluation.config.RunEvalConfig

storage

Help on package langchain.storage in langchain:


NAME

langchain.storage - Implementations of key-value stores and storage helpers.


DESCRIPTION

Module provides implementations of various key-value stores that conform to a simple key-value interface.

The primary goal of these storages is to support implementation of caching.


PACKAGE CONTENTS

  • _lc_store
  • encoder_backed
  • exceptions
  • file_system
  • in_memory
  • redis
  • upstash_redis

CLASSES

  • langchain_core.stores.BaseStore(typing.Generic, abc.ABC)
    • langchain.storage.encoder_backed.EncoderBackedStore
    • langchain.storage.file_system.LocalFileStore

text_splitter

Help on module langchain.text_splitter in langchain:


NAME

langchain.text_splitter - Kept for backwards compatibility.


CLASSES

  • abc.ABC(builtins.object)
    • langchain_text_splitters.base.TextSplitter(langchain_core.documents.transformers.BaseDocumentTransformer, abc.ABC)
      • langchain_text_splitters.base.TokenTextSplitter
      • langchain_text_splitters.character.CharacterTextSplitter
      • langchain_text_splitters.character.RecursiveCharacterTextSplitter
        • langchain_text_splitters.latex.LatexTextSplitter
        • langchain_text_splitters.markdown.MarkdownTextSplitter
        • langchain_text_splitters.python.PythonCodeTextSplitter
      • langchain_text_splitters.konlpy.KonlpyTextSplitter
      • langchain_text_splitters.nltk.NLTKTextSplitter
      • langchain_text_splitters.sentence_transformers.SentenceTransformersTokenTextSplitter
      • langchain_text_splitters.spacy.SpacyTextSplitter
  • builtins.dict(builtins.object)
    • langchain_text_splitters.html.ElementType
    • langchain_text_splitters.markdown.HeaderType
    • langchain_text_splitters.markdown.LineType
  • builtins.object
    • langchain_text_splitters.base.Tokenizer
    • langchain_text_splitters.html.HTMLHeaderTextSplitter
    • langchain_text_splitters.json.RecursiveJsonSplitter
    • langchain_text_splitters.markdown.MarkdownHeaderTextSplitter
  • builtins.str(builtins.object)
    • langchain_text_splitters.base.Language(builtins.str, enum.Enum)
  • enum.Enum(builtins.object)
    • langchain_text_splitters.base.Language(builtins.str, enum.Enum)
  • langchain_core.documents.transformers.BaseDocumentTransformer(abc.ABC)
    • langchain_text_splitters.base.TextSplitter(langchain_core.documents.transformers.BaseDocumentTransformer, abc.ABC)
      • langchain_text_splitters.base.TokenTextSplitter
      • langchain_text_splitters.character.CharacterTextSplitter
      • langchain_text_splitters.character.RecursiveCharacterTextSplitter
        • langchain_text_splitters.latex.LatexTextSplitter
        • langchain_text_splitters.markdown.MarkdownTextSplitter
        • langchain_text_splitters.python.PythonCodeTextSplitter
      • langchain_text_splitters.konlpy.KonlpyTextSplitter
      • langchain_text_splitters.nltk.NLTKTextSplitter
      • langchain_text_splitters.sentence_transformers.SentenceTransformersTokenTextSplitter
      • langchain_text_splitters.spacy.SpacyTextSplitter

tools

Help on package langchain.tools in langchain:


NAME

langchain.tools -Tools are classes that an Agent uses to interact with the world.


DESCRIPTION

Each tool has adescription. Agent uses the description to choose the right tool for the job.


Class hierarchy:

... code-block::

​ ToolMetaclass --> BaseTool --> Tool # Examples: AIPluginTool, BaseGraphQLTool

​ # Examples: BraveSearch, HumanInputRun

Main helpers:

... code-block::

​ CallbackManagerForToolRun, AsyncCallbackManagerForToolRun


PACKAGE CONTENTS

  • amadeus (package)
  • arxiv (package)
  • azure_cognitive_services (package)
  • base
  • bearly (package)
  • bing_search (package)
  • brave_search (package)
  • clickup (package)
  • convert_to_openai
  • dataforseo_api_search (package)
  • ddg_search (package)
  • e2b_data_analysis (package)
  • edenai (package)
  • eleven_labs (package)
  • file_management (package)
  • github (package)
  • gitlab (package)
  • gmail (package)
  • golden_query (package)
  • google_cloud (package)
  • google_finance (package)
  • google_jobs (package)
  • google_lens (package)
  • google_places (package)
  • google_scholar (package)
  • google_search (package)
  • google_serper (package)
  • google_trends (package)
  • graphql (package)
  • human (package)
  • ifttt
  • interaction (package)
  • jira (package)
  • json (package)
  • memorize (package)
  • merriam_webster (package)
  • metaphor_search (package)
  • multion (package)
  • nasa (package)
  • nuclia (package)
  • office365 (package)
  • openapi (package)
  • openweathermap (package)
  • playwright (package)
  • plugin
  • powerbi (package)
  • pubmed (package)
  • python (package)
  • reddit_search (package)
  • render
  • requests (package)
  • retriever
  • scenexplain (package)
  • searchapi (package)
  • searx_search (package)
  • shell (package)
  • slack (package)
  • sleep (package)
  • spark_sql (package)
  • sql_database (package)
  • stackexchange (package)
  • steam (package)
  • steamship_image_generation (package)
  • tavily_search (package)
  • vectorstore (package)
  • wikipedia (package)
  • wolfram_alpha (package)
  • yahoo_finance_news
  • youtube (package)
  • zapier (package)

CLASSES

  • langchain_core.runnables.base.RunnableSerializable(langchain_core.load.serializable.Serializable, langchain_core.runnables.base.Runnable)
    • langchain_core.tools.BaseTool
      • langchain_core.tools.StructuredTool
      • langchain_core.tools.Tool

utilities

Help on package langchain.utilities in langchain:


NAME

langchain.utilities -Utilities are the integrations with third-part systems and packages.


DESCRIPTION

Other LangChain classes useUtilities to interact with third-part systems


PACKAGE CONTENTS

  • alpha_vantage
  • anthropic
  • apify
  • arcee
  • arxiv
  • asyncio
  • awslambda
  • bibtex
  • bing_search
  • brave_search
  • clickup
  • dalle_image_generator
  • dataforseo_api_search
  • duckduckgo_search
  • github
  • gitlab
  • golden_query
  • google_finance
  • google_jobs
  • google_lens
  • google_places_api
  • google_scholar
  • google_search
  • google_serper
  • google_trends
  • graphql
  • jira
  • loading
  • max_compute
  • merriam_webster
  • metaphor_search
  • nasa
  • opaqueprompts
  • openapi
  • openweathermap
  • outline
  • portkey
  • powerbi
  • pubmed
  • python
  • reddit_search
  • redis
  • requests
  • scenexplain
  • searchapi
  • searx_search
  • serpapi
  • spark_sql
  • sql_database
  • stackexchange
  • steam
  • tavily_search
  • tensorflow_datasets
  • twilio
  • vertexai
  • wikipedia
  • wolfram_alpha
  • zapier

CLASSES

  • langchain_community.utilities.requests.GenericRequestsWrapper(pydantic.v1.main.BaseModel)
    • langchain_community.utilities.requests.TextRequestsWrapper
  • pydantic.v1.main.BaseModel(pydantic.v1.utils.Representation)
    • langchain_community.utilities.requests.Requests

utils

Help on package langchain.utils in langchain:


NAME

langchain.utils -Utility functions for LangChain.


DESCRIPTION

These functions do not depend on any other LangChain module.


PACKAGE CONTENTS

  • aiter
  • env
  • ernie_functions
  • formatting
  • html
  • input
  • interactive_env
  • iter
  • json_schema
  • loading
  • math
  • openai
  • openai_functions
  • pydantic
  • strings
  • utils

CLASSES

  • string.Formatter(builtins.object)
    • langchain_core.utils.formatting.StrictFormatter

vectorstores

Help on package langchain.vectorstores in langchain:


NAME

langchain.vectorstores -Vector store stores embedded data and performs vector search.


DESCRIPTION

One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors, and then query the store and retrieve the data that are 'most similar' to the embedded query.


Class hierarchy:

... code-block::

VectorStore --> # Examples: Annoy, FAISS, Milvus

BaseRetriever --> VectorStoreRetriever --> Retriever # Example: VespaRetriever


Main helpers:

... code-block::

Embeddings, Document


PACKAGE CONTENTS

  • alibabacloud_opensearch
  • analyticdb
  • annoy
  • astradb
  • atlas
  • awadb
  • azure_cosmos_db
  • azuresearch
  • bageldb
  • baiducloud_vector_search
  • base
  • cassandra
  • chroma
  • clarifai
  • clickhouse
  • dashvector
  • databricks_vector_search
  • deeplake
  • dingo
  • docarray (package)
  • elastic_vector_search
  • elasticsearch
  • epsilla
  • faiss
  • hippo
  • hologres
  • lancedb
  • llm_rails
  • marqo
  • matching_engine
  • meilisearch
  • milvus
  • momento_vector_index
  • mongodb_atlas
  • myscale
  • neo4j_vector
  • nucliadb
  • opensearch_vector_search
  • pgembedding
  • pgvecto_rs
  • pgvector
  • pinecone
  • qdrant
  • redis (package)
  • rocksetdb
  • scann
  • semadb
  • singlestoredb
  • sklearn
  • sqlitevss
  • starrocks
  • supabase
  • tair
  • tencentvectordb
  • tigris
  • tiledb
  • timescalevector
  • typesense
  • usearch
  • utils
  • vald
  • vearch
  • vectara
  • vespa
  • weaviate
  • xata
  • yellowbrick
  • zep
  • zilliz

CLASSES

  • abc.ABC(builtins.object)
    • langchain_core.vectorstores.VectorStore

2014-03-27(三)

相关推荐
大模型铲屎官1 天前
玩转 LangChain:从文档加载到高效问答系统构建的全程实战
人工智能·python·ai·langchain·nlp·文档加载·问答系统构建
玩电脑的辣条哥2 天前
怎么使用langchain和ollama自己简单开发搭建一个本地有记忆的大模型?
langchain·flask·数字人管家·ai管家·大模型记忆
m0_748250935 天前
GraphRAG如何使用ollama提供的llm model 和Embedding model服务构建本地知识库
python·flask·embedding
for627 天前
langchain4j执行源码分析
java·langchain
冻感糕人~10 天前
使用LangChain、CrewAI、AutoGen搭建数据分析Agent
人工智能·windows·ai·数据分析·langchain·大模型·agent
weixin_3077791311 天前
Python的Langchain库的功能及实现代码
人工智能·python·langchain
加点油。。。。12 天前
Matlab2019a安装C2000 Processors超详细过程
matlab·embedding·dsp开发
CJenny12 天前
LangChain 学习笔记
笔记·学习·langchain
MichaelIp12 天前
LLM大语言模型中RAG切片阶段改进策略
人工智能·python·语言模型·自然语言处理·chatgpt·embedding·word2vec
背太阳的牧羊人13 天前
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(2) —— 从 PDF 文档生成矢量数据库 (VectorDB),然后存储文本的嵌入向量
数据库·人工智能·sql·langchain·pdf