meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
2501_941623321 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛1 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI2 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus2 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声2 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API2 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者2 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者2 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy
YangYang9YangYan2 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全
aitoolhub2 小时前
精选AI设计工具测评:创新性、易用性及行业应用
人工智能·在线设计