meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
科技云报道2 分钟前
AI+云计算互融共生,2025AI云产业发展大会即将举行
人工智能·云计算
飞哥数智坊10 分钟前
TRAE SOLO 正式版实战:一个全栈打卡项目的真实体验
人工智能·trae·solo
哥布林学者19 分钟前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(一)超参数调整
深度学习·ai
qy-ll36 分钟前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化
G311354227338 分钟前
深度学习中适合长期租用的高性价比便宜的GPU云服务器有哪些?
服务器·人工智能·深度学习
掘金安东尼1 小时前
文心 5.0:原生全模态时代的技术分水岭
人工智能
徽4401 小时前
YOLOv5植物模型开发综述
人工智能·目标检测·计算机视觉
徐行tag1 小时前
RLS(递归最小二乘)算法详解
人工智能·算法·机器学习
阿里云云原生2 小时前
阿里云 FunctionAI 技术详解:基于 Serverless 的企业级 AI 原生应用基础设施构建
人工智能·阿里云·serverless
感智教育2 小时前
2025 年世界职业院校技能大赛汽车制造与维修赛道备赛方案
人工智能·汽车·制造