meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
勾股导航5 分钟前
K-means
人工智能·机器学习·kmeans
liliangcsdn6 分钟前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain11 分钟前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
一个处女座的程序猿20 分钟前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay26 分钟前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向37 分钟前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心38 分钟前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai
纯爱掌门人43 分钟前
终焉轮回里,藏着 AI 与人类的答案
前端·人工智能·aigc
人工智能AI技术1 小时前
Transformer:大模型的“万能骨架”
人工智能
uesowys2 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法