meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
Hao想睡觉3 分钟前
CNN卷积神经网络之VggNet和GoogleNet经典网络模型(四)
网络·人工智能·cnn
我不是小upper9 分钟前
anaconda、conda、pip、pytorch、torch、tensorflow到底是什么?它们之间有何联系与区别?
人工智能·pytorch·深度学习·conda·tensorflow·pip
z樾29 分钟前
Sum-rate计算
开发语言·python·深度学习
智汇云校乐乐老师31 分钟前
产教融合 AI赋能 创新引领 | 第十七届高校教育发展高峰论坛在利川成功举办!
人工智能·高峰论坛·讯方技术
热河暖男36 分钟前
Spring Boot AI 极速入门:解锁智能应用开发
java·人工智能·spring boot·ai编程
SugarPPig38 分钟前
(一)LoRA微调BERT:为何在单分类任务中表现优异,而在多分类任务中效果不佳?
人工智能·分类·bert
zzywxc7871 小时前
在处理大数据列表渲染时,React 虚拟列表是提升性能的关键技术,但在实际实现中常遇到渲染抖动和滚动定位偏移等问题。
前端·javascript·人工智能·深度学习·react.js·重构·ecmascript
oscar9991 小时前
在线免费的AI文本转语音工具TTSMaker介绍
人工智能·语音
zhongqu_3dnest1 小时前
VR 三维重建:开启沉浸式体验新时代
人工智能·计算机视觉