meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
ZOMI酱4 分钟前
【AI系统】GPU 架构与 CUDA 关系
人工智能·架构
deephub11 分钟前
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
人工智能·pytorch·深度学习·图嵌入
羞儿17 分钟前
【读点论文】Text Detection Forgot About Document OCR,很实用的一个实验对比案例,将科研成果与商业产品进行碰撞
深度学习·ocr·str·std
deephub43 分钟前
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
人工智能·深度学习·transformer·大语言模型·注意力机制
搏博1 小时前
神经网络问题之二:梯度爆炸(Gradient Explosion)
人工智能·深度学习·神经网络
KGback1 小时前
【论文解析】HAQ: Hardware-Aware Automated Quantization With Mixed Precision
人工智能
电子手信1 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
不高明的骗子1 小时前
【深度学习之一】2024最新pytorch+cuda+cudnn下载安装搭建开发环境
人工智能·pytorch·深度学习·cuda
Chef_Chen1 小时前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博1 小时前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络