meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
咚咚王者几秒前
人工智能之核心技术 深度学习 第十章 模型部署基础
人工智能·深度学习
ydl1128几秒前
深度学习优化器详解:指数加权平均EWA、动量梯度下降Momentum、均方根传递RMSprop、Adam 从原理到实操
人工智能·深度学习
幂链iPaaS1 分钟前
市场六大专业iPaaS平台怎么选
大数据·人工智能
学电子她就能回来吗2 分钟前
深度学习速成:完整的模型验证(测试,demo)套路
人工智能·深度学习
VIP_CQCRE4 分钟前
Nano Banana API 来了:不到半价享官方同款品质,仅需约 ¥0.10/张!
人工智能
CelestialYuxin9 分钟前
【微论文】机器人第一性原理:技术演进的本构逻辑与实现路径
深度学习·机器人·硬件架构
珠海西格10 分钟前
光伏电站全景感知体系:数据采集与设备状态监测技术
大数据·运维·服务器·数据库·人工智能
产品经理邹继强11 分钟前
VTC产品与创新篇④:产品战略全景图——从“造物者”到“生态设计师”
人工智能·产品经理
Deepoch12 分钟前
自然交互+精准感知!Deepoc具身模型开发板让清洁机器人告别“盲扫”
人工智能·科技·机器人·半导体·清洁机器人·具身模型·deepoc
yuezhilangniao14 分钟前
从对话大脑到万能助手:企业级AI助理五层AI架构实战指南-AI开发架构AI体系理性分层篇
人工智能·架构