meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
yzx9910135 分钟前
卷积神经网络(CNN):深度学习的视觉革命者
人工智能·机器学习
路边草随风16 分钟前
python 调用 spring ai sse mcp
人工智能·python·spring
深圳市快瞳科技有限公司35 分钟前
宠物识别算法在AI摄像头的应用实践:从多宠识别到行为分析
人工智能·智能硬件·宠物
ziwu36 分钟前
【鱼类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
小马爱打代码1 小时前
Spring AI:ChatMemory 实现聊天记忆功能
java·人工智能·spring
ziwu1 小时前
【植物识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
Al leng1 小时前
机器学习中偏差和方差的通俗理解
人工智能·机器学习
Mxsoft6191 小时前
某次数据解析失败,发现IEC61850版本差异,手动校验报文结构救急!
人工智能
智元视界1 小时前
农业AI化:如何让一台无人机懂得“看天种地”?
大数据·人工智能·prompt·无人机·数字化转型·产业升级
丝斯20112 小时前
AI学习笔记整理(26)—— 计算机视觉之目标追踪‌
人工智能·笔记·学习