meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
呆萌很1 分钟前
BGR和RGB区别
人工智能
L念安dd12 分钟前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python
大模型真好玩44 分钟前
大模型训练全流程实战指南工具篇(六)——OCR工具实战指南(以DeepSeek-OCR-2为例)
人工智能·langchain·deepseek
谁不学习揍谁!1 小时前
大数据可视化看板:基于电子竞技行业数据大数据可视化分析(详细源码文档等资料)
人工智能·python·信息可视化·stylus
石逸凡1 小时前
智理资产,拿下中台,攻占锦州
人工智能
Mr_Lucifer1 小时前
Duet Space:快手版的 cowork ?
人工智能·ai编程·产品
文艺倾年1 小时前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法
上海合宙LuatOS1 小时前
LuatOS核心库API——【fft 】 快速傅里叶变换
java·前端·人工智能·单片机·嵌入式硬件·物联网·机器学习
硬汉嵌入式2 小时前
CMSIS全家桶再增加个机器学习参考应用与模板软件包CMSIS-MLEK
人工智能·机器学习