meanshift论文学习

1. abstract

2. 理论解读

  • 目标函数

    然后对(11)求导,求解x,x实际就是求解当图像位置的值,求导之后表示为:

进一步整理得:

上式第二项即为meanshift

进一步整理为

上式表明了均值漂移与核函数之间的关系。

3. 缺点

  • 参数选择困难:Meanshift算法中有一些重要的参数需要根据具体的应用场景进行选择,如核函数的带宽参数。这些参数的选择对算法的性能和稳定性有很大影响,但没有一种通用的选择方法。因此,对于不同的目标和环境,需要进行经验性的参数调整,才能使算法达到较好的性能。
  • 计算量大:Meanshift算法在迭代过程中需要计算每个样本点的密度估计,当样本数量较大时,计算量会显著增加,这可能导致算法的运行时间较长,影响实时性。

耗时测试

测试图像为800*800

相关推荐
光羽隹衡5 分钟前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣7 分钟前
深度学习之对比学习
人工智能·深度学习·学习
AI_56789 分钟前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜60023 分钟前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书17338 分钟前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416271 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented1 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie2 小时前
ADALog 日志异常检测
人工智能
Jouham2 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能
HyperAI超神经2 小时前
IQuest-Coder-V1:基于代码流训练的编程逻辑增强模型;Human Face Emotions:基于多标注维度的人脸情绪识别数据集
人工智能·深度学习·学习·机器学习·ai编程