算法---矩阵的乘法及其运用

相信我们都做过一个题叫斐波那契数列,对于一般的题,n的取值范围通常在1000以内,但是如果你遇到的是下面这题呢?

斐波那契数列 - 洛谷

发现了吗?我的n取值范围连long long都会爆出,所以下面我们通过矩阵乘法和快速幂结合来解决该类问题,如果你不知道矩阵乘法和快速幂,这篇文章可能不适合你

下面我们利用矩阵乘法和快速幂来解决该问题:

代码如下:

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
const ll p=1e9+7;
ll x;
const int N=2;
int n=2;
ll a[N+1][N+1],b[N+1];

void func1()
{
    ll m[N+1];
    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            m[i]+=b[j]*a[j][i];
            m[i]%=p;
        }
    }
    memcpy(b,m,sizeof(b));
}
void func2()
{
    ll w[N+1][N+1];
    memset(w,0,sizeof(w));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            for(int k=1;k<=n;k++)
            {
                w[i][j]+=a[i][k]*a[k][j];
                w[i][j]%=p;
            }
        }
    }
    memcpy(a,w,sizeof(a));
}
void quickpow(ll x)
{
    for(;x;x>>=1)
    {
        if(x&1)
        {
            func1();
        }
        func2();
    }
}
int main()
{
    //输入
    cin>>x;
    //快速幂+矩阵乘法
    //初始化
    a[1][1]=0;a[1][2]=1;
    a[2][1]=1;a[2][2]=1;
    b[1]=0;b[2]=1;
    quickpow(x-1);
    //输出
    cout<<b[2];
    return 0;
}

可以优化:

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
const ll p=1e9+7;
ll x;
const int N=2;
int n=2;
ll a[N+1][N+1],b[N+1];

void func1()
{
    ll m[N+1];
    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            m[i]+=b[j]*a[j][i];
            m[i]%=p;
        }
    }
    memcpy(b,m,sizeof(b));
}
void func2()
{
    ll w[N+1][N+1];
    memset(w,0,sizeof(w));
    for(int i=1;i<=n;i++)
    {
        for(int k=1;k<=n;k++)
        {
            if(a[i][k])
            {
                for(int j=1;j<=n;j++)
                {
                    if(a[k][j])
                    {
                        w[i][j]+=a[i][k]*a[k][j];
                        w[i][j]%=p;
                    }
                }
            }
        }
    }
    memcpy(a,w,sizeof(a));
}
void quickpow(ll x)
{
    for(;x;x>>=1)
    {
        if(x&1)
        {
            func1();
        }
        func2();
    }
}
int main()
{
    //输入
    cin>>x;
    //快速幂+矩阵乘法
    //初始化
    a[1][1]=0;a[1][2]=1;
    a[2][1]=1;a[2][2]=1;
    b[1]=0;b[2]=1;
    quickpow(x-1);
    //输出
    cout<<b[2];
    return 0;
}

下面我们给出矩阵乘法和快速幂结合模版,该类问题解题关机是构造矩阵

cpp 复制代码
using ll = long long;
const ll N = 2;//实际情况修改
int n = 2;
ll a[N + 1][N + 1], b[N + 1];
const ll p = 1e8 + 7;//取模的值
void func1()
{
	ll m[N + 1];
	//清空
	memset(m, 0, sizeof(m));
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			m[i] += a[j][i] * b[j];
			m[i] %= p;
		}
	}
	memcpy(b, m, sizeof(b));
}
void func2()
{
	ll w[N + 1][N + 1];
	memset(w, 0, sizeof(w));
	/*for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			for (int k = 1; k <=n; k++)
			{
				w[i][j] += a[i][k] * a[k][j];
				w[i][j] %= p;
			}
		}
	}*/
	//优化:
	for (int i = 1; i <= n; i++)
	{
		for (int k = 1; k <= n; k++)
		{
			if (a[i][k])
			{
				for (int j = 1; j <= n; j++)
				{
					if (a[k][j])
					{
						w[i][j] += a[i][k] * a[k][j];
						w[i][j] %= p;
					}
				}
			}
		}
	}
	memcpy(a, w, sizeof(a));
}
void quickpow(ll x)
{
	for (; x; x >>= 1)
	{
		if (x & 1)
		{
			func1();
		}
		func2();
	}
}

关于这类问题,很多网址都有大量题目,大家可以自行去学习,感谢大家的支持!!!

相关推荐
java干货1 小时前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
皮皮哎哟1 小时前
数据结构:嵌入式常用排序与查找算法精讲
数据结构·算法·排序算法·二分查找·快速排序
程序员清洒2 小时前
CANN模型剪枝:从敏感度感知到硬件稀疏加速的全链路压缩实战
算法·机器学习·剪枝
vortex52 小时前
几种 dump hash 方式对比分析
算法·哈希算法
lbb 小魔仙2 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗3 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
Wei&Yan3 小时前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
团子的二进制世界4 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法
吃杠碰小鸡4 小时前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨4 小时前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#