搜索与图论——Prim算法求最小生成树

在最小生成树问题里,正边和负边都没问题

朴素版prim算法 时间复杂度O(n^2)

生成树:每一次选中的t点,它和集合的距离对应的那条边,就是生成树的一条边

算法流程和dijkstra算法非常相似

cpp 复制代码
#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 510,INF = 0x3f3f3f3f;

int n,m;
int g[N][N];
int dist[N];
bool vis[N];

int prim(){
    memset(dist,0x3f,sizeof dist);
    dist[1] = 0;
    int res = 0;
    for(int i = 1; i <= n; i ++ ){
        int t = -1;
        for(int j = 1; j <= n; j ++ ){
            if(!vis[j] && (t == -1 || dist[j] < dist[t])){
                t = j;
            }
        }
            vis[t] = true;
            if(dist[t] == INF) return 0;
            //res的更新要先于dist[t]的更新,因为如果出现负环,就可能导致dist[t]被错误更新,从而导致res的错误
            res += dist[t];
            for(int j = 1; j <= n; j ++ ){
                /* 与dijkstra
                dist[j] = min(dist[j],dist[t] + g[t][j]);
                不同的是,prim是与g[t][j]作比较,
                因为dijkstra的dist[j]表示的是j与原点的最短距离,而prim算法中
                dist[j]表示的是j点与集合的最短距离 */
                dist[j] = min(dist[j],g[t][j]);
            }
            vis[t] = true;
    }
    return res;
}

int main(){
    cin >> n >> m;
    memset(g, 0x3f, sizeof g);
    while(m -- ){
        int u,v,w;
        cin >> u >> v >> w;
        //无向图是特殊的有向图,建边时只要建一条从a到b的,再建一条从b到a的就可以了
        g[u][v] = g[v][u] = min(g[u][v],w);
    }
    int t = prim();
    if(!t) cout << "impossible" << endl;
    else cout << t << endl;
    return 0;
}

堆优化版prim几乎不会用到,一般直接用kruskal就可以解决。堆优化的prim对比kruskal没有明显优势,还比较难写,故此处不贴模板。

相关推荐
Helibo443 分钟前
2025年12月gesp3级题解
数据结构·c++·算法
p&f°5 分钟前
垃圾回收两种算法
java·jvm·算法
点云SLAM13 分钟前
点云配准算法之- GICP算法点云配准概率模型推导和最大似然求解(MLE)
算法·机器人·slam·点云配准·最大似然估计·点云数据处理·gicp算法
曹轲恒15 分钟前
双栈实现队列/双队列实现栈
算法
AI科技星21 分钟前
张祥前统一场论电荷定义方程分析报告
开发语言·经验分享·线性代数·算法·数学建模
Swift社区32 分钟前
LeetCode 460 - LFU 缓存
算法·leetcode·缓存
程芯带你刷C语言简单算法题1 小时前
Day39~实现一个算法确定将一个二进制整数翻转为另一个二进制整数,需要翻转的位数
c语言·开发语言·学习·算法·c
zcbdandan1 小时前
JNA内存对齐导致的结构体数组传输错误
数据结构·算法
dundunmm1 小时前
【每天一个知识点】YOLO算法
算法·yolo·目标检测
lihihi1 小时前
P5182 棋盘覆盖
算法·图论