论文笔记:基于多粒度信息融合的社交媒体多模态假新闻检测

整理了ICMR2023 Multi-modal Fake News Detection on Social Media via Multi-grained Information Fusion)论文的阅读笔记

背景

在假新闻检测领域,目前的方法主要集中在文本和视觉特征的集成上,但不能有效地利用细粒度和粗粒度级别的多模态信息。此外,由于模态之间缺乏相关性或每个模态所做的决策之间存在矛盾,它们还存在歧义问题,如图一,为了克服这些挑战,本文提出了一个用于假新闻检测的多粒度多模态融合网络(MMFN)。

MMFN分别使用两个基于transformer的预训练模型来编码文本和图像的令牌级特征。多模态模块融合细粒度特征,同时考虑到CLIP编码器编码的粗粒度特征。为了解决歧义问题,设计了基于相似性加权的单模态分支,以自适应地调整多模态特征的使用。

模型

MMFN的网络设计如图2所示,由多模态特征编码器、多粒度特征融合模块、单模态分支和基于CLIP相似度的模态加权以及分类器组成。

具体来说,这篇文章使用了三种预训练的编码器对多模态特征进行编码,分别是基于transformer的BERT和SWIN-T,基于对比学习的CLIP。

需要注意的是,BERT和SWIN-T的输出都是token级的,BERT的输出表示为 T b = [ t 1 b , t 2 b , . . . , t n w b ] T^b=[t_1^b,t_2^b,...,t_{nw}^b] Tb=[t1b,t2b,...,tnwb],其中 t i b t_i^b tib表示文本嵌入中第i个token(也就是第i个词)的最后一个隐藏状态的输出, d b d_b db是单词嵌入的维度。SWIN-T的输出表示为 V s = [ v 1 s , v 2 s , . . . , v n p s ] V^s=[v_1^s,v_2^s,...,v_{n_p}^s] Vs=[v1s,v2s,...,vnps],其中, v i s ∈ R s s v_i^s\in R^{s_s} vis∈Rss为模型最后一层输出处对应于输入的第i个patch的隐藏状态,𝑛𝑝为SWIN-T中的patch数, d s d_s ds为视觉嵌入的隐藏大小。

CLIP文本和图片编码器的结果为 X c = [ t c , v c ] X^c=[t^c,v^c] Xc=[tc,vc],分别表示图片和文本模态的嵌入向量,他们处于同一个嵌入空间。

拿到了这些特征后,本文的单模态分支就是把BERT和SWIN-T的token级向量进行平平均池化,然后和CLIP的编码结果拼起来经过一个映射头,作为两个单模态分支特征,即: F t = Φ T ( T b ˉ ; t c ) F^t=\Phi_T(\bar{T_b};t^c) Ft=ΦT(Tbˉ;tc) F v = Φ V ( V s ˉ ; v c ) F^v=\Phi_V(\bar{V_s};v^c) Fv=ΦV(Vsˉ;vc)  接下来我们看粗细粒度的多模态融合模块,所谓细粒度,就是把 T b T_b Tb和 V s V_s Vs分别送入两个transformer架构的共注意力机制模块,得到互相加权后的文本和图片细粒度特征: F v t = C T ( ( T b W t ) , ( V s W v ) ) F^{vt}=CT((T^bW^t),(V^sW^v)) Fvt=CT((TbWt),(VsWv)) F t v = C T ( ( V s W v ) , ( T b W t ) ) F^tv=CT((V^sW^v),(T^bW^t)) Ftv=CT((VsWv),(TbWt))  然后通过几个全连接层把互相加权过的细粒度特征和粗粒度特征融合: M f = F F N 1 ( F v t ; F t v ) M^f=FFN_1(F^{vt};F^{tv}) Mf=FFN1(Fvt;Ftv) M c = F F N 2 ( t c ; v c ) M^c=FFN_2(t^c;v^c) Mc=FFN2(tc;vc) F m = s i m i l a r i t y ⋅ Φ M ( M f , M c ) F^m=similarity\cdot \Phi_M(M^f,M^c) Fm=similarity⋅ΦM(Mf,Mc)  similarity是通过CLIP特征算出来的模态间余弦相似度,作者认为,如果直接将单模态分支表示发送给分类器进行决策,分类器可能更倾向于使用具有更深网络的多模态表示来拟合结果,而单模态分支可能会干扰决策并导致更严重的歧义问题。因此使用CLIP余弦相似度作为多模态特征加权的系数来指导分类器的学习过程,也就是给多模态特征加权。

将三个分支的特征送入分类头得到pre,损失函数是交叉熵。

实验

使用的数据集是2017年MM文章提出的Twitter和Weibo,以及Fakenewsnet中的Gossipcop,得到了SOTA效果:

消融实验:

在微博的测试集上进行的T-SNE降维可视化:

相关推荐
youcans_2 小时前
【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
论文阅读·人工智能·大语言模型·多模态·眼底图像
Cuby!5 小时前
【AFDM与信号处理:论文阅读】仿射频分复用:扩展OFDM以实现场景灵活性和弹性
论文阅读·笔记·学习·信息与通信·信号处理
Data_Journal9 小时前
Puppeteer vs. Playwright —— 哪个更好?
运维·人工智能·爬虫·媒体·静态代理
m0_6501082410 小时前
DETR3D:基于 3D-to-2D 查询的多视图 3D 目标检测框架
论文阅读·自动驾驶·3d目标检测·rgb 多视角图像·无预测深度图依赖·detr3d
拉姆哥的小屋11 小时前
基于多模态深度学习的城市公园社交媒体评论智能分析系统——从BERTopic主题建模到CLIP图文一致性的全栈实践
人工智能·python·深度学习·矩阵·媒体
m0_6501082412 小时前
UniAD:面向规划的端到端自动驾驶统一框架
论文阅读·自动驾驶·uniad·ad全栈统一框架·端到端闭环·目标导向的任务协同·视觉单模态
CV-杨帆1 天前
论文阅读:arxiv 2025 DeepSeek-R1 Thoughtology: Let‘s think about LLM Reasoning
论文阅读
QFIUNE1 天前
【文献阅读】DP-Site:一种基于双重深度学习的蛋白质-肽相互作用位点预测方法
论文阅读
Ma0407131 天前
【论文阅读24】-利用大型语言模型进行免训练的视频异常检测
论文阅读·语言模型·blip-2·q-former
程途拾光1581 天前
企业组织架构图导出Word 在线编辑免费工具
大数据·论文阅读·人工智能·信息可视化·架构·word·流程图