使用阿里云试用Elasticsearch学习:1.1 基础入门——入门实践

阿里云试用一个月:https://help.aliyun.com/search/?k=elastic\&scene=all\&page=1

官网试用十五天:https://www.elastic.co/cn/cloud/cloud-trial-overview

Elasticsearch中文文档:https://www.elastic.co/guide/cn/elasticsearch/guide/current/_document_oriented.html

控制台修改配置

自动创建索引打开

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/aedabe609e224916b3b393be3596af61.png![在这里插入图片描述](https://file.jishuzhan.net/article/1775820149710917634/5596f57954d32151c6dbe843609a5a82.webp)

访问白名单打开

创建一个雇员目录

为了让大家对 Elasticsearch 能实现什么及其上手难易程度有一个基本印象,让我们从一个简单的教程开始并介绍索引、搜索及聚合等基础概念。我们将一并介绍一些新的技术术语,即使无法立即全部理解它们也无妨,因为在本书后续内容中,我们将继续深入介绍这里提到的所有概念。

创建一个雇员目录

我们受雇于 Megacorp 公司,作为 HR 部门新的 "热爱无人机" ("We love our drones!")激励项目的一部分,我们的任务是为此创建一个员工目录。该目录应当能培养员工认同感及支持实时、高效、动态协作,因此有一些业务需求:

  • 支持包含多值标签、数值、以及全文本的数据
  • 检索任一员工的完整信息
  • 允许结构化搜索,比如查询 30 岁以上的员工
  • 允许简单的全文搜索以及较复杂的短语搜索
  • 支持在匹配文档内容中高亮显示搜索片段
  • 支持基于数据创建和管理分析仪表盘

索引员工文档

第一个业务需求是存储员工数据。 这将会以 员工文档 的形式存储:一个文档代表一个员工。存储数据到 Elasticsearch 的行为叫做 索引 ,但在索引一个文档之前,需要确定将文档存储在哪里。

一个 Elasticsearch 集群可以 包含多个 索引 ,相应的每个索引可以包含多个 类型 。 这些不同的类型存储着多个 文档 ,每个文档又有 多个 属性 。

对于员工目录,我们将做如下操作:

  • 每个员工索引一个文档,文档包含该员工的所有信息。
  • 每个文档都将是 employee 类型 。
  • 该类型位于 索引 megacorp 内。
  • 该索引保存在我们的 Elasticsearch 集群中。
bash 复制代码
# 这种指定employee类型的已经不支持了
PUT /megacorp/employee/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}

从Elasticsearch 7.x版本开始,推荐不再使用自定义类型,比如employee。在较新的Elasticsearch版本中,索引中只有文档,不再有针对文档类型的区分。因此,在创建索引时,不需要指定文档类型,直接指定文档ID即可。

bash 复制代码
PUT /megacorp/_doc/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}

注意,路径 /megacorp/_doc/1 包含了三部分的信息:

  • megacorp ------ 索引名称
  • _doc ------ 默认类型名称
  • 1 ------ 特定雇员的ID
  • 请求体 ------ JSON 文档 ------ 包含了这位员工的所有详细信息,他的名字叫 John Smith ,今年 25 岁,喜欢攀岩。

很简单!无需进行执行管理任务,如创建一个索引或指定每个属性的数据类型之类的,可以直接只索引一个文档。Elasticsearch 默认地完成其他一切,因此所有必需的管理任务都在后台使用默认设置完成。

进行下一步前,让我们增加更多的员工信息到目录中:

bash 复制代码
PUT /megacorp/_doc/2
{
    "first_name" :  "Jane",
    "last_name" :   "Smith",
    "age" :         32,
    "about" :       "I like to collect rock albums",
    "interests":  [ "music" ]
}
PUT /megacorp/_doc/3
{
    "first_name" :  "Douglas",
    "last_name" :   "Fir",
    "age" :         35,
    "about":        "I like to build cabinets",
    "interests":  [ "forestry" ]
}

检索文档

目前我们已经在 Elasticsearch 中存储了一些数据, 接下来就能专注于实现应用的业务需求了。第一个需求是可以检索到单个雇员的数据。

这在 Elasticsearch 中很简单。简单地执行 一个 HTTP GET 请求并指定文档的地址------索引库、类型和ID。 使用这三个信息可以返回原始的 JSON 文档:

bash 复制代码
GET /megacorp/_doc/1

返回结果包含了文档的一些元数据,以及 _source 属性,内容是 John Smith 雇员的原始 JSON 文档:

bash 复制代码
{
  "_index": "megacorp",
  "_id": "1",
  "_version": 1,
  "_seq_no": 2,
  "_primary_term": 1,
  "found": true,
  "_source": {
    "first_name": "John",
    "last_name": "Smith",
    "age": 25,
    "about": "I love to go rock climbing",
    "interests": [
      "sports",
      "music"
    ]
  }
}
  • _index: 显示了该文档所属的索引名称,这里是megacorp。
  • _id: 显示了文档的ID,这里是1。
  • _version: 显示了文档的版本号,每次文档更新都会增加这个版本号。
  • _seq_no: 显示了文档在索引中的序列号,用于处理并发操作。
  • _primary_term: 显示了文档在索引中的主要分片的代数,用于处理并发操作。
  • found: 显示了文档是否被找到,这里是true表示找到了。
  • _source: 包含了实际的文档数据,包括first_name、last_name、age、about和interests等字段,这些字段就是您插入的文档数据。

将 HTTP 命令由 PUT 改为 GET 可以用来检索文档,同样的,可以使用 DELETE 命令来删除文档,以及使用 HEAD 指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT

轻量搜索

一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!

第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:

bash 复制代码
GET megacorp/_search

可以看到,我们仍然使用索引库 megacorp ,但与指定一个文档 ID 不同,这次使用 _search 。返回结果包括了所有三个文档,放在数组 hits 中。一个搜索默认返回十条结果。

bash 复制代码
{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 3,
      "relation": "eq"
    },
    "max_score": 1,
    "hits": [
      {
        "_index": "megacorp",
        "_id": "1",
        "_score": 1,
        "_source": {
          "first_name": "John",
          "last_name": "Smith",
          "age": 25,
          "about": "I love to go rock climbing",
          "interests": [
            "sports",
            "music"
          ]
        }
      },......
    ]
  }
}
  • took: 表示查询所花费的时间,这里是1毫秒。
  • timed_out: 指示查询是否超时,这里是false表示未超时。
  • _shards: 提供有关查询执行期间涉及的分片数量和状态的信息。
    • total: 总分片数。
    • successful: 成功执行查询的分片数。
    • skipped: 跳过的分片数。
    • failed: 失败的分片数。
  • hits: 包含了与查询匹配的文档的信息。
    • total: 符合查询条件的总文档数,value是具体的数量,relation表示关系,这里是"eq"(等于)表示确切匹配。
    • max_score: 匹配文档中最高的得分,通常为1。
    • hits: 匹配的文档数组,每个文档包含了以下信息:
      • _index: 文档所属的索引名称。
      • _id: 文档的ID。
      • _score: 文档的匹配得分。
      • _source: 实际的文档数据,包含了您插入的文档内容。

接下来,尝试下搜索姓氏为 Smith 的雇员。为此,我们将使用一个 高亮 搜索,很容易通过命令行完成。这个方法一般涉及到一个 查询字符串 (query-string) 搜索,因为我们通过一个URL参数来传递查询信息给搜索接口:

bash 复制代码
GET megacorp/_search?q=last_name:Smith

使用查询表达式搜索

Query-string 搜索通过命令非常方便地进行临时性的即席搜索 ,但它有自身的局限性(参见 轻量 搜索 )。Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。

领域特定语言 (DSL), 使用 JSON 构造了一个请求。我们可以像这样重写之前的查询所有名为 Smith 的搜索 :

bash 复制代码
GET megacorp/_search
{
    "query" : {
        "match" : {
            "last_name" : "Smith"
        }
    }
}

返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match 查询(属于查询类型之一,后面将继续介绍)。

更复杂的搜索

现在尝试下更复杂的搜索。 同样搜索姓氏为 Smith 的员工,但这次我们只需要年龄大于 30 的。查询需要稍作调整,使用过滤器 filter ,它支持高效地执行一个结构化查询。

bash 复制代码
GET megacorp/_search
{
    "query" : {
        "bool": {
            "must": {
                "match" : {
                    "last_name" : "smith"
                }
            },
            "filter": {
                "range" : {
                    "age" : { "gt" : 30 } 
                }
            }
        }
    }
}

must 这部分与我们之前使用的 match 查询 一样。
filter 这部分是一个 range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于_(great than)。

目前无需太多担心语法问题,后续会更详细地介绍。只需明确我们添加了一个 过滤器 用于执行一个范围查询,并复用之前的 match 查询。现在结果只返回了一名员工,叫 Jane Smith,32 岁。

全文搜索

截止目前的搜索相对都很简单:单个姓名,通过年龄过滤。现在尝试下稍微高级点儿的全文搜索------一项 传统数据库确实很难搞定的任务。

搜索下所有喜欢攀岩(rock climbing)的员工:

bash 复制代码
GET megacorp/_search
{
    "query" : {
        "match" : {
            "about" : "rock climbing"
        }
    }
}

显然我们依旧使用之前的 match 查询在about 属性上搜索 "rock climbing" 。得到两个匹配的文档:

bash 复制代码
"hits": [
      {
        "_index": "megacorp",
        "_id": "1",
        "_score": 1.4167401,
        "_source": {
          "first_name": "John",
          "last_name": "Smith",
          "age": 25,
          "about": "I love to go rock climbing",
          "interests": [
            "sports",
            "music"
          ]
        }
      },
      {
        "_index": "megacorp",
        "_id": "2",
        "_score": 0.4589591,
        "_source": {
          "first_name": "Jane",
          "last_name": "Smith",
          "age": 32,
          "about": "I like to collect rock albums",
          "interests": [
            "music"
          ]
        }
      }
    ]

_score 为相关性得分

Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:John Smith 的 about 属性清楚地写着 "rock climbing" 。

但为什么 Jane Smith 也作为结果返回了呢?原因是她的 about 属性里提到了 "rock" 。因为只有 "rock" 而没有 "climbing" ,所以她的相关性得分低于 John 的。

这是一个很好的案例,阐明了 Elasticsearch 如何 在 全文属性上搜索并返回相关性最强的结果。Elasticsearch中的 相关性 概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。

短语搜索

找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者_短语_ 。 比如, 我们想执行这样一个查询,仅匹配同时包含 "rock" 和 "climbing" ,并且 二者以短语 "rock climbing" 的形式紧挨着的雇员记录。

为此对 match 查询稍作调整,使用一个叫做 match_phrase 的查询:

bash 复制代码
"_source": {
   "first_name": "John",
   "last_name": "Smith",
   "age": 25,
   "about": "I love to go rock climbing",
   "interests": [
     "sports",
     "music"
   ]
 }

高亮搜索

许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。

再次执行前面的查询,并增加一个新的 highlight 参数:

bash 复制代码
GET megacorp/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    },
    "highlight": {
        "fields" : {
            "about" : {}
        }
    }
}

当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做 highlight 的部分。这个部分包含了 about 属性匹配的文本片段,并以 HTML 标签 <em></em> 封装:

bash 复制代码
"hits": [
      {
        "_index": "megacorp",
        "_id": "1",
        "_score": 1.4167401,
        "_source": {
          "first_name": "John",
          "last_name": "Smith",
          "age": 25,
          "about": "I love to go rock climbing",
          "interests": [
            "sports",
            "music"
          ]
        },
        "highlight": {
          "about": [
            "I love to go <em>rock</em> <em>climbing</em>"
          ]
        }
      }
    ]

分析

终于到了最后一个业务需求:支持管理者对员工目录做分析。 Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。

举个例子,挖掘出员工中最受欢迎的兴趣爱好:

如果您的目标是对 interests 字段进行聚合操作(aggregation),那么您需要确保该字段是可以被聚合的类型。在 Elasticsearch 中,文本类型的字段默认是无法被聚合的,因为聚合操作通常需要使用字段数据(fielddata)来计算聚合结果,而文本类型的字段默认是禁用字段数据的。

对于您的情况,interests 是一个包含多个兴趣爱好的列表,您想要对这些兴趣爱好进行聚合操作。为了实现这一目的,您可以将 interests 字段定义为 keyword 类型的多值字段,并启用字段数据。这样可以允许 Elasticsearch 对该字段进行聚合操作。

bash 复制代码
GET megacorp/_search
{
  "aggs": {
    "all_interests": {
      "terms": { "field": "interests.keyword" }
    }
  }
}

暂时忽略掉语法,直接看看结果:

bash 复制代码
......
"aggregations": {
    "all_interests": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "music",
          "doc_count": 2
        },
        {
          "key": "forestry",
          "doc_count": 1
        },
        {
          "key": "sports",
          "doc_count": 1
        }
      ]
    }
  }

可以看到,两位员工对音乐感兴趣,一位对林业感兴趣,一位对运动感兴趣。这些聚合的结果数据并非预先统计,而是根据匹配当前查询的文档即时生成的。如果想知道叫 Smith 的员工中最受欢迎的兴趣爱好,可以直接构造一个组合查询:

bash 复制代码
GET megacorp/_search
{
  "query": {
    "match": {
      "last_name": "smith"
    }
  },
  "aggs": {
    "all_interests": {
      "terms": {
        "field": "interests.keyword"
      }
    }
  }
}

all_interests 聚合已经变为只包含匹配查询的文档:

bash 复制代码
{......
  "hits":{......},
  "aggregations": {
    "all_interests": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "music",
          "doc_count": 2
        },
        {
          "key": "sports",
          "doc_count": 1
        }
      ]
    }
  }
}

聚合还支持分级汇总 。比如,查询特定兴趣爱好员工的平均年龄:

bash 复制代码
GET megacorp/_search
{
    "aggs" : {
        "all_interests" : {
            "terms" : { "field" : "interests.keyword" },
            "aggs" : {
                "avg_age" : {
                    "avg" : { "field" : "age" }
                }
            }
        }
    }
}

得到的聚合结果有点儿复杂,但理解起来还是很简单的:

bash 复制代码
{......
  "aggregations": {
    "all_interests": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "music",
          "doc_count": 2,
          "avg_age": {
            "value": 28.5
          }
        },
        {
          "key": "forestry",
          "doc_count": 1,
          "avg_age": {
            "value": 35
          }
        },
        {
          "key": "sports",
          "doc_count": 1,
          "avg_age": {
            "value": 25
          }
        }
      ]
    }
  }
}

输出基本是第一次聚合的加强版。依然有一个兴趣及数量的列表,只不过每个兴趣都有了一个附加的 avg_age 属性,代表有这个兴趣爱好的所有员工的平均年龄。

即使现在不太理解这些语法也没有关系,依然很容易了解到复杂聚合及分组通过 Elasticsearch 特性实现得很完美,能够提取的数据类型也没有任何限制。

教程结语

欣喜的是,这是一个关于 Elasticsearch 基础描述的教程,且仅仅是浅尝辄止,更多诸如 suggestions、geolocation、percolation、fuzzy 与 partial matching 等特性均被省略,以便保持教程的简洁。但它确实突显了开始构建高级搜索功能多么容易。不需要配置------只需要添加数据并开始搜索!

很可能语法会让你在某些地方有所困惑,并且对各个方面如何微调也有一些问题。没关系!本书后续内容将针对每个问题详细解释,让你全方位地理解 Elasticsearch 的工作原理。

分布式特性

在本章开头,我们提到过 Elasticsearch 可以横向扩展至数百(甚至数千)的服务器节点,同时可以处理PB级数据。我们的教程给出了一些使用 Elasticsearch 的示例,但并不涉及任何内部机制。Elasticsearch 天生就是分布式的,并且在设计时屏蔽了分布式的复杂性。

Elasticsearch 在分布式方面几乎是透明的。教程中并不要求了解分布式系统、分片、集群发现或其他的各种分布式概念。可以使用笔记本上的单节点轻松地运行教程里的程序,但如果你想要在 100 个节点的集群上运行程序,一切依然顺畅。

Elasticsearch 尽可能地屏蔽了分布式系统的复杂性。这里列举了一些在后台自动执行的操作:

  • 分配文档到不同的容器 或 分片 中,文档可以储存在一个或多个节点中
  • 按集群节点来均衡分配这些分片,从而对索引和搜索过程进行负载均衡
  • 复制每个分片以支持数据冗余,从而防止硬件故障导致的数据丢失
  • 将集群中任一节点的请求路由到存有相关数据的节点
  • 集群扩容时无缝整合新节点,重新分配分片以便从离群节点恢复

后续步骤

现在大家对于通过 Elasticsearch 能够实现什么样的功能、以及上手的难易程度应该已经有了初步概念。Elasticsearch 力图通过最少的知识和配置做到开箱即用。学习 Elasticsearch 的最好方式是投入实践:尽情开始索引和搜索吧!

然而,对于 Elasticsearch 知道得越多,就越有生产效率。告诉 Elasticsearch 越多的领域知识,就越容易进行结果调优。

本书的后续内容将帮助你从新手成长为专家,每个章节不仅阐述必要的基础知识,而且包含专家建议。如果刚刚上手,这些建议可能无法立竿见影;但 Elasticsearch 有着合理的默认设置,在无需干预的情况下通常都能工作得很好。当你开始追求毫秒级的性能提升时,随时可以重温这些章节。

相关推荐
Code哈哈笑6 分钟前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习
小小工匠19 分钟前
ElasticSearch - 深入解析 Elasticsearch Composite Aggregation 的分页与去重机制
elasticsearch·composite·after_key·桶聚合分页
风_流沙23 分钟前
java 对ElasticSearch数据库操作封装工具类(对你是否适用嘞)
java·数据库·elasticsearch
QQ同步助手1 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
流浪的小新1 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
TGB-Earnest2 小时前
【py脚本+logstash+es实现自动化检测工具】
大数据·elasticsearch·自动化
南宫生10 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__10 小时前
Web APIs学习 (操作DOM BOM)
学习
woshiabc11110 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎