数据结构进阶篇 之 【并归排序】(递归与非递归实现)详细讲解

都说贪小便宜吃大亏,但吃亏是福,那不就是贪小便宜吃大福了吗

一、并归排序 MergeSort

1.基本思想

2.实现原理

3.代码实现

4.归并排序的特性总结

二、非递归并归排序实现

三、完结撒❀

--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀-正文开始-❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--❀--

一、并归排序 MergeSort

1.基本思想

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。归并排序核心步骤:

2.实现原理

其实先还是运用了递归大事化小的原理,假设我们要对数组arr[i]进行排序,我们可以将该数组均分为两个数组(从中间划分)arr[0] ~ arr[i/2],arr[i/2+1] ~ arr[i],要使arr数组有序可以先将arr[0] ~ arr[i/2]和arr[i/2+1] ~ arr[i]有序,而arr[0] ~ arr[i/2]和arr[i/2+1] ~ arr[i]有序之后可以从头到尾比较两个数组范围内的每一个值,按照要求所排的顺序往新开辟的另一个数组tmp中拷贝,最后再从tmp数组中拷贝到arr数组中完成排序,这就是归并过程。

而要想arr[0] ~ arr[i/2]和arr[i/2+1] ~ arr[i]有序,可以先让arr[0] ~ arr[i/4]和arr[i/4+1]~arr[i/2]有序,arr[i/2+1] ~ arr[mini](中间位置)和arr[mini+1] ~ arr[i]有序,而arr[0] ~ arr[i/4]有序就需要...

这样就可以用递归来实现,数组一直向下递归"分割",当数组被分为一个数据的时候就可以返回进行合并

所以把并轨排序递归实现按照二叉树来看,完成排序的核心要求就是递归"分割"后,要实现上层数组有序就先要实先下层数组也为有序,完成最后一层数据有序向上回溯即可完成整个数组有序

返回合并过程动态图解:

3.代码实现

c 复制代码
void _MergeSort(int* a, int begin, int end, int* tmp)
{
	if (begin == end)
	{
		return;
	}

	int min = (end + begin) / 2;

	_MergeSort(a, begin, min, tmp);
	_MergeSort(a, min+1, end, tmp);

	//并归
	int begin1 = begin, end1 = min;
	int begin2 = min + 1, end2 = end;
	int i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] <= a[begin2])
		{
			tmp[i++] = a[begin1++];
		}

		else
		{
			tmp[i++] = a[begin2++];
		}
	}

	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}

	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}

	memcpy(a+begin, tmp+begin, sizeof(int)*(end - begin + 1));//注意
}

//并归排序 O(N*logN)
void MergeSort(int* a, int n)
{
	assert(a);

	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}

	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
	tmp = NULL;
}

4.归并排序的特性总结

1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(N)

4. 稳定性:稳定

二、非递归并归排序实现

对于归并的非递归实现我们直接利用循环就可以解决。

我们可以将要并归排序的数组直接看成1个数据为一组往下进行并归,并归后再两个数据为一组往下进行并归,直到将数组并归完成为止,见下图:


此过程与递归过程中的回溯过程一样,只是不再需要进行递归分解

这个看起来容易,但实现起来并不简单,我们需要注意许多细节在这里

如何通过一次循环来完成一层数据的并归呢?

以第一层一个数据为一组为例,我们先要完成对数据的控制,开始我们就先要控制10,6一起进行并归,而后再控制7,1进行并归,直到第一层结束为止

完成上述代码实现之后,我们只需在上述代码外再套一层循环来控制gap,即可实现整个代码逻辑

但需要注意的是并不是所有数据最终都会"组队成双"实现归并,如下:

上面数组中最后一组便是一个例子

我们把每次组队并归的两组中,第一组的队头为begin1,队尾为end1,第二组的队头为begin2,队尾为end2
因为begin1不可能越界,那么出现上面问题一共有三种情况:

1.end1越界

当end1越界的话,那么表示这次组队肯定是没有第二组,并且第一组也部分越界,而第一组如果是一个数据的好不用进行并归排序,如果超过一个数据说明在之前已经并归排序完毕,数据也是有序的,所以也不再需要进行并归排序。end1越界直接跳出循环不进行并归排序即可。

2.begin2越界

当begin2越界,情况其实与end1越界一样,不同的可能就是第一组数据都没有越界,没有第二组数据,这时也不需要进行并归排序,直接跳出循环即可。

3.end2越界

当end2越界,表明有第一组数据,第二组数据越界,此时只要将第二组数据的范围缩小到原数组的队尾即可,也就是end2 = n - 1,然后再将两组数据进行并归排序即可(并归排序的实现只要求所给的两组数据有序,不要求数据数量是否相等)。

代码实现:

c 复制代码
//并归排序非递归
void MergeSortNonR(int* a, int n)
{
	assert(a);

	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}

	int gap = 1;

	while (gap < n)
	{
		for (int j = 0; j < n; j+=gap*2)
		{
			int begin1 = j, end1 = begin1 + gap - 1;
			int begin2 = begin1 + gap, end2 = begin2 + gap - 1;

			if (end1 >= n || begin2 >= n)
			{
				break;
			}

			if (end2 >= n)
			{
				end2 = n - 1;
			}

			int i = j;

			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					tmp[i++] = a[begin1++];
				}

				else
				{
					tmp[i++] = a[begin2++];
				}
			}

			while (begin1 <= end1)
			{
				tmp[i++] = a[begin1++];
			}

			while (begin2 <= end2)
			{
				tmp[i++] = a[begin2++];
			}

			memcpy(a + j, tmp + j, sizeof(int) * (end2 - j + 1));
		}
		gap *= 2;
	}

	free(tmp);
	tmp = NULL;
}

三、完结撒❀

如果以上内容对你有帮助不妨点赞支持一下,以后还会分享更多编程知识,我们一起进步。

最后我想讲的是,据说点赞的都能找到漂亮女朋友❤

相关推荐
Swift社区4 小时前
LeetCode 399 除法求值
算法·leetcode·职场和发展
仰泳的熊猫5 小时前
LeetCode:98. 验证二叉搜索树
数据结构·c++·算法·leetcode
CC.GG5 小时前
【C++】STL容器--list的使用
开发语言·c++·list
洲覆5 小时前
基于 clangd 搭建 Redis 6.2 源码阅读与调试环境
开发语言·数据库·redis·缓存
Python智慧行囊5 小时前
图像处理(三)--开运算与闭运算,梯度运算,礼帽与黑帽
人工智能·算法·计算机视觉
前端小L5 小时前
动态规划的“细节魔鬼”:子序列 vs 子数组 —— 最长重复子数组
算法·动态规划
程序员大雄学编程5 小时前
「机器学习笔记12」支持向量机(SVM)详解:从数学原理到Python实战
笔记·机器学习·支持向量机
草莓熊Lotso5 小时前
《算法闯关指南:优选算法--二分查找》--19.x的平方根,20.搜索插入位置
java·开发语言·c++·算法
旭意5 小时前
C++蓝桥杯之函数与递归
开发语言·c++·蓝桥杯
。TAT。5 小时前
C++ - vector
开发语言·c++·学习