SpringAI如何集成Ollama开发AI应用

文章目录

  • [spring AI 介绍](#spring AI 介绍)
      • [1. Spring ML](#1. Spring ML)
      • [2. Spring Data](#2. Spring Data)
      • [3. Spring Integration](#3. Spring Integration)
      • [4. Spring Boot](#4. Spring Boot)
      • [5. Spring Cloud](#5. Spring Cloud)
      • [如何开始使用 Spring AI](#如何开始使用 Spring AI)
      • 注意事项
  • [Spring AI集成Ollama](#Spring AI集成Ollama)
      • [1. 添加依赖](#1. 添加依赖)
      • [2. 配置应用](#2. 配置应用)
      • [3. 注入和使用 AiClient](#3. 注入和使用 AiClient)
      • [4. 运行和测试](#4. 运行和测试)
      • 注意事项

spring AI 介绍

Spring AI 是一个基于 Spring 框架的人工智能(AI)和机器学习(ML)集成项目。它旨在简化在 Spring 应用程序中使用 AI 和 ML 技术的过程,提供了一系列开箱即用的工具和库,使得开发者能够更容易地将智能功能集成到他们的应用中。

Spring AI 的核心组件包括:

1. Spring ML

Spring ML 提供了一系列用于机器学习的库和工具,包括数据预处理、特征工程、模型训练、评估和部署等功能。它支持流行的机器学习框架,如 TensorFlow、PyTorch 和 scikit-learn。

2. Spring Data

Spring Data 使得与数据存储和检索工作变得更加简单,无论是关系型数据库、NoSQL 数据库还是搜索引擎,都可以通过 Spring Data 提供的统一接口进行操作。

3. Spring Integration

Spring Integration 提供了一种基于消息的中间件,支持与外部系统的集成,这对于构建复杂的 AI 系统和工作流非常有用。

4. Spring Boot

Spring Boot 提供了快速开发、配置和部署 Spring 应用程序的能力,它通过提供默认配置和简化的依赖管理,使得创建独立的、生产级别的基于 Spring 的应用程序变得容易。

5. Spring Cloud

Spring Cloud 提供了构建分布式系统中的常见模式的工具,如配置管理、服务发现、断路器、智能路由等,这对于构建可扩展的 AI 服务至关重要。

如何开始使用 Spring AI

要在项目中使用 Spring AI,你可以遵循以下步骤:

  1. 创建 Spring Boot 项目:使用 Spring Initializr 创建一个新的 Spring Boot 项目,或者在你的现有项目中添加 Spring AI 依赖。

  2. 添加依赖 :在你的 pom.xmlbuild.gradle 文件中添加 Spring AI 相关的依赖。

    xml 复制代码
    <!-- Spring AI 示例依赖 -->
    <dependency>
        <groupId>org.springframework</groupId>
        <artifactId>spring-ai</artifactId>
        <version>你的Spring AI版本</version>
    </dependency>
  3. 配置 AI 组件:根据你的需求配置机器学习模型、数据源和其他 AI 相关的组件。

  4. 编写业务逻辑:在你的应用程序中编写使用 AI 功能的业务逻辑代码。

  5. 测试和部署:测试你的 AI 功能,并将其部署到生产环境中。

注意事项

  • 确保你了解所使用的 AI 和 ML 技术的原理和限制。
  • 考虑数据隐私和合规性问题,特别是在处理敏感数据时。
  • 监控 AI 系统的运行状况和性能,确保其稳定性和可靠性。

Spring AI 通过提供一套完整的工具和库,使得在 Spring 生态系统中开发和部署 AI 应用变得更加容易。开发者可以利用这些工具来构建智能应用程序,从而提高业务效率和创新能力。

Spring AI集成Ollama

Spring AI 是一个旨在简化在 Spring 应用程序中集成和使用人工智能(AI)功能的框架。它提供了一个抽象层,使得开发者可以轻松地与不同的 AI 服务和模型进行交互。Ollama 是一个基于 Llama 模型的本地 AI 服务,它允许在本地服务器上运行 AI 模型,而不是依赖于外部服务。

要将 Spring AI 与 Ollama 集成,你需要遵循以下步骤:

1. 添加依赖

首先,你需要在项目的 pom.xmlbuild.gradle 文件中添加 Spring AI 和 Ollama 的依赖。这通常通过包含 Spring Milestone Repository 并添加相应的 starter 依赖来完成。

xml 复制代码
<!-- Spring Milestone Repository -->
<repositories>
    <repository>
        <id>spring-snapshots</id>
        <name>Spring Snapshots</name>
        <url>https://repo.spring.io/snapshot</url>
        <releases>
            <enabled>false</enabled>
        </releases>
        <snapshots>
            <enabled>true</enabled>
        </snapshots>
    </repository>
</repositories>

<!-- Spring AI OpenAI Starter (需要替换为 Ollama 相关的依赖) -->
<dependency>
    <groupId>org.springframework.experimental.ai</groupId>
    <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
    <version>0.8.0-SNAPSHOT</version>
</dependency>

2. 配置应用

在你的 application.propertiesapplication.yml 文件中,配置 Spring AI 以使用 Ollama 作为 AI 服务提供者。这可能包括设置 API 密钥、模型选择和其他相关配置。

yaml 复制代码
# Application configuration for Ollama
spring:
  ai:
    ollama:
      api-key: <your-ollama-api-key>
      # Other Ollama specific configurations

3. 注入和使用 AiClient

在你的服务层或控制器中,注入 AiClient 接口,然后使用它来与 Ollama 模型进行交互。Spring AI 提供了 generate 方法,允许你发送文本提示给 AI 模型并接收响应。

java 复制代码
@RestController
public class AiController {

    private final AiClient aiClient;

    public AiController(AiClient aiClient) {
        this.aiClient = aiClient;
    }

    @GetMapping("/generate-text")
    public String generateText() {
        String message = "Your input text or prompt";
        return aiClient.generate(message);
    }
}

4. 运行和测试

启动你的 Spring Boot 应用程序,并测试 AI 集成是否按预期工作。你可以通过发送 HTTP 请求到你的 REST API 端点来验证 AI 功能。

注意事项

  • 确保你使用的是正确的 Ollama 依赖和配置。
  • 如果 Ollama 模型需要 GPU 加速,确保你的服务器具备相应的硬件和驱动支持。
  • 由于 Spring AI 和 Ollama 可能仍在积极开发中,关注官方文档和 GitHub 仓库以获取最新的信息和更新。

以上步骤提供了一个基本的指南,用于在 Spring Boot 应用程序中集成 Spring AI 和 Ollama。具体的实现细节可能会根据你的项目需求和 Ollama 模型的特性而有所不同。【2】

相关推荐
AiTEN_Robotics22 分钟前
AMR机器人:如何满足现代物料搬运的需求
人工智能·机器人·自动化
产品人卫朋25 分钟前
卫朋:IPD流程落地 - 市场地图拆解篇
大数据·人工智能·物联网
沛沛老爹1 小时前
跨平台Agent Skills开发:适配器模式赋能提示词优化与多AI应用无缝集成
人工智能·agent·适配器模式·rag·企业转型·skills
zhangshuang-peta1 小时前
适用于MCP的Nginx类代理:为何AI工具集成需要网关层
人工智能·ai agent·mcp·peta
Network_Engineer1 小时前
从零手写RNN&BiRNN:从原理到双向实现
人工智能·rnn·深度学习·神经网络
想进部的张同学1 小时前
week1-day5-CNN卷积补充感受野-CUDA 一、CUDA 编程模型基础 1.1 CPU vs GPU 架构线程索引与向量乘法
人工智能·神经网络·cnn
睡醒了叭1 小时前
目标检测-深度学习-SSD模型项目
人工智能·深度学习·目标检测
冰西瓜6001 小时前
从项目入手机器学习(五)—— 机器学习尝试
人工智能·深度学习·机器学习
Coding茶水间1 小时前
基于深度学习的狗品种检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
InterestOriented1 小时前
中老年线上学习发展:兴趣岛“内容+服务+空间”融合赋能下的体验升级
人工智能·学习