大语言模型开发各个阶段的评估方法(未完)

大语言模型开发过程评估

1. 提出问题

场景:我们要设计一个专有领域的大语言模型,设计思路是先选择开源的基座模型,使用领域相关的数据集对基座模型进行微调得到通用的大语言模型,再使用特定任务的数据集进一步对基座模型进行微调得到专用的大语言模型。

问题:如何对大语言模型开发的各个阶段进行评价,以确保每一步操作的有效性。

思考:第一次接触这个问题的时候,我想到的对大语言模型的评价是针对专用模型的评价,在公用的开源数据集或者基准上计算评价指标的得分,如果得分高则意味着大语言模型性能好。但是,仅考虑对专用大语言模型的评价就会忽略之前开发的各阶段所做的努力。显然,评估大语言模型开发的各个阶段更加合理,能够证明每一步工作的有效性,提高开发的效率。

2. 大语言模型开发过程评估

根据我们设计领域特定大语言模型的思路,对大语言模型开发过程的评估主要有两个方面,一个是数据的评估,一个是模型的评估。

数据评估方法

对于数据评估方法,无论是为了获得通用大语言模型还是专用大语言模型都需要使用数据对模型进行微调,即使是最终评估模型的性能,也需要考虑数据集或基准的有效性,所以评估数据主要有三个方面:

  • 为了获得通用大语言模型而使用的训练数据
  • 为了获得专用大语言模型而使用的训练数据
  • 为了评价大语言模型性能而使用的数据集或者基准

训练数据质量评估

  • 数据来源和收集:训练数据的来源和收集方式是否可靠和权威
  • 数据量和多样性:训练数据的大小是否足够,数据是否覆盖了各种语言和使用场景
  • 数据标注:训练数据的标准是否准确、一致
  • 数据清洗和预处理:数据清洗、去重

评价数据集或者基准的质量评估

  • 数据真实性和代表性:评价数据集是否基于真实数据,能够代表显示世界中的各种场景
  • 评价指标的适用性:能否客观地评估模型的性能

模型评估方法

对于模型评估方法,首先是评估基准模型的性能以选择合适的基座模型,其次是评估通用的大语言模型的性能,最后是评估专用的大语言模型的性能,所以评估模型主要有三个方面:

  • 评估基座模型
  • 评估通用大语言模型
  • 评估专用大语言模型

评估基座模型

评估通用大语言模型

  • Accuracy
  • Perplexity
  • F1 Score(Precision、Recall)主要是针对分类任务

评估专用大语言模型

评估特定于任务的专用大语言模型,这里以我接触较多的用于代码生成任务的大语言模型为例,主要有以下评估方法:

  • BLEU:将生成代码和参考代码看作tokens序列,也可以认为是将两者看作字符串序列,通过比较tokens级别的n-grams匹配精度来对大语言模型进行评价
  • METEOR
  • ROUGE-L
  • CHRF/CHRF++
  • RUBY
  • CodeBLEU
  • Pass@k
相关推荐
知来者逆1 天前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
小任同学Alex1 天前
Lagent:从零搭建你的 Multi-Agent
人工智能·自然语言处理·大模型·大语言模型·多模态
图灵追慕者2 天前
大语言模型学习工具及资源总结和落地应用
大语言模型·工具·落地应用·相关资源
deephub6 天前
LEC: 基于Transformer中间层隐藏状态的高效特征提取与内容安全分类方法
人工智能·深度学习·transformer·大语言模型·特征提取
流穿6 天前
WebSocket vs SSE:实时通信技术的对比与选择
网络·websocket·网络协议·大语言模型·sse
python_知世8 天前
基于LLaMA-Factory微调Llama3
人工智能·深度学习·程序人生·自然语言处理·大语言模型·llama·大模型微调
知来者逆8 天前
基于大语言模型的多代理下一代制造系统能灵活动态管理制造资源的高效调度方法
人工智能·深度学习·自然语言处理·llm·大语言模型·制造
知来者逆13 天前
MSciNLI—— 针对科学自然语言推理任务提出的多样化数据集用于训练语言模型和大规模语言模型建立基线
人工智能·深度学习·机器学习·语言模型·自然语言处理·大语言模型
知来者逆14 天前
LAVE——基于大语言模型的新型代理辅助视频编辑工具允许用户根据自己的编辑风格进行调整
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·大语言模型·智能算法
少喝冰美式18 天前
docker-compose本地部署FastGPT与简单使用
深度学习·docker·自然语言处理·大模型·llm·大语言模型·fastgpt