matlab 绘制正态分布图

目录

本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。

一、简单正态分布曲线

1、代码实现

cpp 复制代码
% 生成符合标准正态分布的随机数
data = randn(10000, 1);

% 计算平均值和标准差
mu = mean(data);
sigma = std(data);

% 绘制标准正态分布曲线
x = linspace(mu - 4*sigma, mu + 4*sigma, 100);
y = normpdf(x, mu, sigma);
plot(x, y, 'LineWidth', 2);
hold on;

% 在x轴上标示出距离平均值位置的1倍、2倍和3倍标准差值位置
line([mu-sigma, mu-sigma], [0, normpdf(mu-sigma, mu, sigma)], 'Color', 'r', 'LineStyle', '--');
line([mu+sigma, mu+sigma], [0, normpdf(mu+sigma, mu, sigma)], 'Color', 'r', 'LineStyle', '--');
line([mu-2*sigma, mu-2*sigma], [0, normpdf(mu-2*sigma, mu, sigma)], 'Color', 'g', 'LineStyle', '--');
line([mu+2*sigma, mu+2*sigma], [0, normpdf(mu+2*sigma, mu, sigma)], 'Color', 'g', 'LineStyle', '--');
line([mu-3*sigma, mu-3*sigma], [0, normpdf(mu-3*sigma, mu, sigma)], 'Color', 'b', 'LineStyle', '--');
line([mu+3*sigma, mu+3*sigma], [0, normpdf(mu+3*sigma, mu, sigma)], 'Color', 'b', 'LineStyle', '--');

2、结果展示

二、绘制不同分布区间的颜色

1、代码实现

cpp 复制代码
% 设置图形属性
xlabel('x');
ylabel('Probability Density');
title('Standard Normal Distribution');
legend('Standard Normal Distribution', '1\sigma', '2\sigma', '3\sigma');

x = -4:0.01:4; % x轴范围
y = normpdf(x, 0, 1); % 标准正态分布的概率密度函数

plot(x, y, 'b', 'LineWidth', 2); % 绘制蓝色曲线
hold on; % 保持图形窗口,以便后续添加标记和区域

mean_value = 0; % 平均值
std_value = 1; % 标准差

% 计算距离平均值位置的1倍、2倍和3倍标准差值
x1 = mean_value - std_value;
x2 = mean_value - 2 * std_value;
x3 = mean_value - 3 * std_value;
x4 = mean_value + std_value;
x5 = mean_value + 2 * std_value;
x6 = mean_value + 3 * std_value;

% 绘制标记
plot([x1, x1], [0, normpdf(x1, 0, 1)], 'r--', 'LineWidth', 1); %1倍标准差位置,红色虚线
plot([x2, x2], [0, normpdf(x2, 0, 1)], 'g--', 'LineWidth', 1); % 2倍标准差位置,绿色虚线
plot([x3, x3], [0, normpdf(x3, 0, 1)], 'm--', 'LineWidth', 1); % 3倍标准差位置,品红色虚线
plot([x4, x4], [0, normpdf(x4, 0, 1)], 'r--', 'LineWidth', 1); % 1倍标准差位置,红色虚线
plot([x5, x5], [0, normpdf(x5, 0, 1)], 'g--', 'LineWidth', 1); % 2倍标准差位置,绿色虚线
plot([x6, x6], [0, normpdf(x6, 0, 1)], 'm--', 'LineWidth', 1); % 3倍标准差位置,品红色虚线

% 绘制不同分布区间的颜色
area(x(x<x1), y(x<x1), 'FaceColor', [0.9 0.9 0.9]); % 平均值左侧区域,浅灰色
area(x(x>x6), y(x>x6), 'FaceColor', [0.9 0.9 0.9]); % 平均值右侧区域,浅灰色
area(x(x>=x1 & x<=x4), y(x>=x1 & x<=x4), 'FaceColor', [0.8 0.8 0.8]); % 1倍标准差区域,灰色
area(x(x>x4 & x<=x5), y(x>x4 & x<=x5), 'FaceColor', [0.7 0.7 0.7]); % 2倍标准差区域,深灰色
area(x(x>x5 & x<=x6), y(x>x5 & x<=x6), 'FaceColor', [0.6 0.6 0.6]); % 3倍标准差区域,更深灰色

legend('标准正态分布', '1倍标准差', '2倍标准差', '3倍标准差');
xlabel('x');
ylabel('概率密度');

hold off; % 取消保持图形窗口

2、结果展示

三、计算标准差分布的百分比

1、代码实现

cpp 复制代码
x = -4:0.01:4; % x轴范围
y = normpdf(x, 0, 1); % 标准正态分布的概率密度函数

plot(x, y, 'b', 'LineWidth', 2); % 绘制蓝色曲线
hold on; % 保持图形窗口,以便后续添加标记

mean_value = 0; % 平均值
std_value = 1; % 标准差

% 计算1倍、2倍和3倍标准差值位置
x_1std = [mean_value-std_value, mean_value+std_value];
x_2std = [mean_value-2*std_value, mean_value+2*std_value];
x_3std = [mean_value-3*std_value, mean_value+3*std_value];

% 绘制标记线段
plot(x_1std, [0, 0], 'r--', 'LineWidth', 1.5); % 1倍标准差位置,红色虚线
plot(x_2std, [0, 0], 'g--', 'LineWidth', 1.5); % 2倍标准差位置,绿色虚线
plot(x_3std, [0, 0], 'm--', 'LineWidth', 1.5); % 3倍标准差位置,品红色虚线

% 计算标准差分布的百分比
p_1std = normcdf(x_1std, mean_value, std_value);
p_2std = normcdf(x_2std, mean_value, std_value) - normcdf(x_1std, mean_value, std_value);
p_3std = normcdf(x_3std, mean_value, std_value) - normcdf(x_2std, mean_value, std_value);

% 标注百分比文本
text(mean_value+std_value, 0.05, sprintf('68.27%%'), 'HorizontalAlignment', 'center');
text(mean_value+2*std_value, 0.05, sprintf('95.45%%'), 'HorizontalAlignment', 'center');
text(mean_value+3*std_value, 0.05, sprintf('99.73%%'), 'HorizontalAlignment', 'center');


% 设置不同分布区间的颜色
fill([x_1std(1), x_1std(2), x_1std(2), x_1std(1)], [0, 0, max(y), max(y)], 'r', 'FaceAlpha', 0.2); % 1倍标准差区间,红色
fill([x_1std(2), x_2std(2), x_2std(2), x_1std(2)], [0, 0, max(y), max(y)], 'g', 'FaceAlpha', 0.2); % 1-2倍标准差区间,绿色
fill([x_2std(2), x_3std(2), x_3std(2), x_2std(2)], [0, 0, max(y), max(y)], 'm', 'FaceAlpha', 0.2); % 2-3倍标准差区间,品红色
fill([x_3std(2), max(x), max(x), x_3std(2)], [0, 0, max(y), max(y)], 'y', 'FaceAlpha', 0.2); % 大于3倍标准差区间,黄色

legend('标准正态分布', '1倍标准差', '2倍标准差', '3倍标准差');
xlabel('x');
ylabel('概率密度');

2、结果展示

相关推荐
Jackson@ML44 分钟前
如何快速高效学习Python?
开发语言·python
小oo呆2 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar2 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle2 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
西瓜本瓜@2 小时前
在Android中如何使用Protobuf上传协议
android·java·开发语言·git·学习·android-studio
绿算技术2 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
UFIT2 小时前
Python函数与模块笔记
开发语言·python
机智的人猿泰山2 小时前
java kafka
java·开发语言·kafka
Y1nhl3 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰3 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调