复现带积分柱状图+多个分类注释

Original research: Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer - PMC (nih.gov)

补充文件位置:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356190/bin/jitc-2021-002467supp001.xlsx

原图

该图展示了样本的评分变化和相关的临床信息变化。

对每个转移性胃癌患者(列)进行临床病理特征和分子特征注释。列注释表示上皮-间充质转化 (EMT)(间充质、非间充质);组织学(中度腺癌 (ADC)、ADC 差、印环细胞等);MSI 状态(MSS、MSI);EBV状态(阴性、阳性);分子亚型(染色体不稳定性(CIN)、EBV、基因组稳定(GS)、MSI-H);程序性死亡配体 1 综合阳性评分 (CPS)(高、低、NE);组织肿瘤突变负荷(tTMB);最佳总体反应 (BOR) (CR、PR、PD、SD);以及每个样本的二元 BOR(响应者、非响应者)。TMEscore、TMEscoreA 和 TMEscoreB 显示在面板顶部。高 TMEscore 能够识别 EBV 阳性和 MSI-H 患者以及免疫检查点阻断反应者。


复现
复制代码
rm(list = ls()) 
library(ComplexHeatmap)
library(circlize)
data <- read.csv("data.csv")

#进行文献复现#
dat1 <- data[order(data$TMEscore),]#进行排序
dat1 <- as.data.frame(dat1)
#[1] "TMEscore"          "TMEscoreA"         "TMEscoreB"         "EMT"              
#[5] "Pathology"         "MSI_type"          "EBV_in_situ"       "molecular.subtype"
#[9] "CPS"               "BOR" 

#是否需要将数据转换为int??: 保留3位小数测试
ht_list <-  HeatmapAnnotation(TMEscore = anno_barplot(dat1$TMEscore, height = unit(1.5, "cm"))) %v%    
  HeatmapAnnotation(TMEscoreA = anno_barplot(dat1$TMEscoreA, height = unit(1.5, "cm"))) %v%
  HeatmapAnnotation(TMEscoreB = anno_barplot(dat1$TMEscoreB, height = unit(1.5, "cm")))  %v%
  HeatmapAnnotation(EMT = dat1$EMT,
                  col = list(EMT = c("Mesenchymal" = "red", "Non-mesenchymal" = "#1f78b4")))%v%
  HeatmapAnnotation(Pathology = dat1$Pathology,
                    col = list(Pathology = c("Moderater_ADC" = "red","Others" = "#1f78b4",
                                             "Poor_ADC"="#f38181","Signet_ring_cell" = "#ff7f00")))%v%
  HeatmapAnnotation(MSI_type = dat1$MSI_type,
                    col = list(MSI_type = c("MSI" = "#1f78b4","MSS" = "#ff7f00")))%v%
  HeatmapAnnotation(EBV_in_situ = dat1$EBV_in_situ,
                    col = list(EBV_in_situ = c("Positive" = "red","Negative" = "#ff7f00")))%v%
  HeatmapAnnotation(molecular.subtype = dat1$molecular.subtype,
                    col = list(molecular.subtype = c("CIN" = "red","EBV" = "#ff7f00",
                                                     "GS" = "blue", "MSI-H" = "white")))%v%
  HeatmapAnnotation(CPS = dat1$CPS,
                    col = list(CPS = c("High" = "#ff7f00","Low" = "blue")))%v%
  HeatmapAnnotation(BOR = dat1$BOR,col = list(BOR = c("CRPR" = "#ff7f00","SDPD" = "#f38181")))

#绘图
draw(ht_list, column_title = "Kim cohort",
     merge_legends = TRUE, heatmap_legend_side = "bottom")
dev.off()

参考文献:

1:Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer

相关推荐
九章云极AladdinEdu19 分钟前
临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集
人工智能·pytorch·数据挖掘·pandas·scikit-learn·paddlepaddle·gpu算力
上海锝秉工控20 分钟前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
说私域20 分钟前
基于开源AI智能名片、链动2+1模式与S2B2C商城小程序的流量运营与个人IP构建研究
人工智能·小程序·流量运营
xiaoxiaoxiaolll2 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师2 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客5 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei5 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910135 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享6 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生246 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互