复现带积分柱状图+多个分类注释

Original research: Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer - PMC (nih.gov)

补充文件位置:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356190/bin/jitc-2021-002467supp001.xlsx

原图

该图展示了样本的评分变化和相关的临床信息变化。

对每个转移性胃癌患者(列)进行临床病理特征和分子特征注释。列注释表示上皮-间充质转化 (EMT)(间充质、非间充质);组织学(中度腺癌 (ADC)、ADC 差、印环细胞等);MSI 状态(MSS、MSI);EBV状态(阴性、阳性);分子亚型(染色体不稳定性(CIN)、EBV、基因组稳定(GS)、MSI-H);程序性死亡配体 1 综合阳性评分 (CPS)(高、低、NE);组织肿瘤突变负荷(tTMB);最佳总体反应 (BOR) (CR、PR、PD、SD);以及每个样本的二元 BOR(响应者、非响应者)。TMEscore、TMEscoreA 和 TMEscoreB 显示在面板顶部。高 TMEscore 能够识别 EBV 阳性和 MSI-H 患者以及免疫检查点阻断反应者。


复现
复制代码
rm(list = ls()) 
library(ComplexHeatmap)
library(circlize)
data <- read.csv("data.csv")

#进行文献复现#
dat1 <- data[order(data$TMEscore),]#进行排序
dat1 <- as.data.frame(dat1)
#[1] "TMEscore"          "TMEscoreA"         "TMEscoreB"         "EMT"              
#[5] "Pathology"         "MSI_type"          "EBV_in_situ"       "molecular.subtype"
#[9] "CPS"               "BOR" 

#是否需要将数据转换为int??: 保留3位小数测试
ht_list <-  HeatmapAnnotation(TMEscore = anno_barplot(dat1$TMEscore, height = unit(1.5, "cm"))) %v%    
  HeatmapAnnotation(TMEscoreA = anno_barplot(dat1$TMEscoreA, height = unit(1.5, "cm"))) %v%
  HeatmapAnnotation(TMEscoreB = anno_barplot(dat1$TMEscoreB, height = unit(1.5, "cm")))  %v%
  HeatmapAnnotation(EMT = dat1$EMT,
                  col = list(EMT = c("Mesenchymal" = "red", "Non-mesenchymal" = "#1f78b4")))%v%
  HeatmapAnnotation(Pathology = dat1$Pathology,
                    col = list(Pathology = c("Moderater_ADC" = "red","Others" = "#1f78b4",
                                             "Poor_ADC"="#f38181","Signet_ring_cell" = "#ff7f00")))%v%
  HeatmapAnnotation(MSI_type = dat1$MSI_type,
                    col = list(MSI_type = c("MSI" = "#1f78b4","MSS" = "#ff7f00")))%v%
  HeatmapAnnotation(EBV_in_situ = dat1$EBV_in_situ,
                    col = list(EBV_in_situ = c("Positive" = "red","Negative" = "#ff7f00")))%v%
  HeatmapAnnotation(molecular.subtype = dat1$molecular.subtype,
                    col = list(molecular.subtype = c("CIN" = "red","EBV" = "#ff7f00",
                                                     "GS" = "blue", "MSI-H" = "white")))%v%
  HeatmapAnnotation(CPS = dat1$CPS,
                    col = list(CPS = c("High" = "#ff7f00","Low" = "blue")))%v%
  HeatmapAnnotation(BOR = dat1$BOR,col = list(BOR = c("CRPR" = "#ff7f00","SDPD" = "#f38181")))

#绘图
draw(ht_list, column_title = "Kim cohort",
     merge_legends = TRUE, heatmap_legend_side = "bottom")
dev.off()

参考文献:

1:Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer

相关推荐
Moshow郑锴1 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20252 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR3 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945194 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火5 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴6 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR6 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢6 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网