家庭主机不能跑 Mixtral-8x22b-v0.1?我就跑给你看

谁说家用机不能跑 Mixtral-8x22b-v0.1的,我就偏不信。Mistral 公司又发布了比8x7B更强的MoE模型------Mixtral-8x22b-v0.1。于是我就想试试家庭机能不能跑。

昨天也挺艰辛的。从下午18点开始,HF下载就卡的一批,我还以为CDN网络被墙了。后来想想,估计是友军都在下载model。还是Musk英明神武,先投了Bittorrent文件,再丢Huggingface。动不动100B参的LLM确实占带宽。建议开源100B以上的放个Bittorrent文件,或者大家优先B2B下载。

硬件

RTX 4090

i9 13代

RAM 128G

Arch OS

日志

首先,原生的版本我们肯定pass掉的,于是看到 mistral-community/Mixtral-8x22B-v0.1-4bit。

下载完后,根据代码运行。结果报了vram不足

这个时候查看Model size:72.7B params

参考

大模型参数量和占的显存怎么换算?

只进行推理如果只是进行推理的话,还是比较容易计算的。目前模型的参数绝大多数都是float32类型, 占用4个字节。所以一个粗略的计算方法就是,每10亿个参数,占用4G显存(实际应该是10^9*4/1024/1024/1024=3.725G,为了方便可以记为4G)。比如LLaMA的参数量为7000559616,那么全精度加载这个模型参数需要的显存为:7000559616 * 4 /1024/1024/1024 = 26.08G

于是试试CPU的模式,结果查了github说bitsandbytes必须使用CUDA。WTF!!!

想想有没有CPU模拟方案,一番查找后发现 github.com/intel/intel...

一顿突突部署,结果卡在exit方法错误。难怪隔壁55K,I家项目1.9K。

我再看了看还有 mistral-community/Mixtral-8x22B-v0.1-AWQ。 "杰哥,我超勇的哦" 我又下载后,运行发现 autoawq也需要cuda模型而且 Requires ~260GB VRAM in fp16, 73GB in int4 怎么可以这样对待玩家显卡 4090?

难道不知道我会cpp吗?好歹我之前研究过 llamafile 的。感谢 MaziyarPanahi/Mixtral-8x22B-v0.1-GGUF 项目把它量化成Guff。 立刻clone llama.cpp项目,make编译,main运行试试。这里我胆子大,直接选择Mixtral-8x22B-v0.1.Q5_K_M。

腾了160G disk,终于跑起来了。

嗯,真香~ 不得不说,Mixtral调教的还不错, 速度能在1 token/s

相关推荐
墨风如雪3 分钟前
深度解析 OpenAI Academy:官方下场,AI 学习迎来新基准?
aigc
遇码4 分钟前
大语言模型开发框架——LangChain
人工智能·语言模型·langchain·llm·大模型开发·智能体
Ai野生菌10 分钟前
工具介绍 | SafeLLMDeploy教程来了 保护本地LLM安全部署
网络·人工智能·安全·大模型·llm
KarudoLee3 小时前
AIGC7——AIGC驱动的视听内容定制化革命:从Sora到商业化落地
人工智能·aigc
缘友一世4 小时前
开源的 LLM 应用开发平台Dify的安装和使用
开源·llm·ollama·deepseek
kcarly13 小时前
DeepSeek 都开源了哪些技术?
开源·大模型·llm·deepseek
洛阳泰山16 小时前
PPTAgent:一款开源免费生成和评估幻灯片的项目
python·ai·llm·agent·ppt
晨航16 小时前
AI Agent拐点已至,2B+2C星辰大海——行业深度报告
人工智能·ai·aigc
姚瑞南16 小时前
从模糊感知到量化评估:构建一个Prompt打分工具
人工智能·自然语言处理·chatgpt·prompt·aigc
redreamSo17 小时前
模型上下文协议(MCP):连接大语言模型与外部世界的桥梁
llm·mcp