上采样-双线性插值

双线性插值方法是一种常用的上采样方法,它在计算目标图像中每个像素的值时,利用了周围四个最近邻像素的信息,通过线性插值计算得到更加平滑的结果。下面通过一个图文并茂的例子来详细描述双线性插值方法的实现过程。

现在我们想将这张图像上采样到更高的分辨率,假设是原来的两倍。首先,我们要确定目标图像中每个像素的位置。在这个例子中,我们假设原始图像的尺寸是3x3,上采样后的目标图像尺寸将是6x6。

确定目标图像中每个像素的位置:

复制代码
原始图像(3x3):             目标图像(6x6):

a   b   c                     a   0   b   0   c   0
d   e   f                     0   0   0   0   0   0
g   h   i                     d   0   e   0   f   0
                              0   0   0   0   0   0
                              g   0   h   0   i   0
                              0   0   0   0   0   0

现在,对于目标图像中的每个像素,我们要找到在原始低分辨率图像中距离最近的四个像素,并进行双线性插值计算。

假设我们要计算目标图像中位置(1, 1)处的像素值。该位置在原始图像中的坐标是(0.5, 0.5)。我们需要找到这个位置最近的四个像素(a, b, d, e),并根据其像素值进行插值计算。

复制代码
          |         |
----------a---------b----------
          |         |
          |    (1, 1)|
----------d----(0.5, 0.5)----e--
          |         |

双线性插值的计算过程如下:

  1. 水平方向插值:首先在水平方向上进行插值计算。根据位置(0.5, 0.5)处的权重,对像素值a和b进行插值计算。假设权重为0.5,则水平方向插值结果为:

Horizontal_interp = 0.5 * a + 0.5 * b

  1. 垂直方向插值:接着在垂直方向上进行插值计算。根据位置(0.5, 0.5)处的权重,对像素值d和e进行插值计算。同样假设权重为0.5,则垂直方向插值结果为:

Vertical_interp = 0.5 * d + 0.5 * e

  1. **综合插值结果**:最后,将水平方向和垂直方向的插值结果综合起来,得到位置(1, 1)处的最终插值结果:

Final_value = 0.5 * (0.5 * a + 0.5 * b) + 0.5 * (0.5 * d + 0.5 * e)

= 0.25 * a + 0.25 * b + 0.25 * d + 0.25 * e

这样就得到了目标图像中位置(1, 1)处的像素值。对于目标图像中的其他像素,也可以通过类似的方法进行双线性插值计算。

重复这个过程,我们可以得到整个上采样后的图像。

通过双线性插值,我们得到了更加平滑的上采样结果,相比于最近邻插值方法,双线性插值能够更好地保留图像中的细节和边缘信息,得到更高质量的图像。

相关推荐
七超AI落地实操2 分钟前
AI让我成了全栈,但Serverless才让我真正“自由”
人工智能
Codebee3 分钟前
注解驱动的知识中枢:MCPServer赋能AI业务的技术架构与实践
人工智能·架构·开源
倔强青铜三3 分钟前
苦练Python第6天:数字魔法全解
人工智能·python·面试
前端搬砖仔噜啦噜啦嘞10 分钟前
trae如何对接MCP(对接微信自动化MCP),编辑器里面也可以进行微信聊天啦
人工智能
MUTA️11 分钟前
《MAE: Masked Autoencoders Are Scalable Vision Learners》论文精读笔记
人工智能·笔记·深度学习·transformer
Ronin-Lotus15 分钟前
深度学习篇---昇腾NPU&CANN 工具包
人工智能·深度学习·npu·昇腾 cann
wenzhangli719 分钟前
AI+低代码双引擎驱动:重构智能业务系统的产品逻辑
人工智能·低代码·重构
倔强青铜三30 分钟前
苦练Python第5天:字符串从入门到格式化
人工智能·python·面试
PNP机器人33 分钟前
普林斯顿大学DPPO机器人学习突破:Diffusion Policy Policy Optimization 全新优化扩散策略
人工智能·深度学习·学习·机器人·仿真平台·franka fr3
Gyoku Mint40 分钟前
深度学习×第7卷:参数初始化与网络搭建——她第一次挑好初始的重量
人工智能·pytorch·rnn·深度学习·神经网络·算法·机器学习