机器学习和深度学习--李宏毅(笔记与个人理解)Day17

Day 17Convolutional Neyral Network (CNN)

卷积神经网络一般都用在image 上面比较多一些,所以课程的例子大多数也都是image

Image Classification

the same size

how about for pc?
这里对于tensor 张量这个概念,我还是比较奇怪,在我认为一个矩阵也可以表示三维的空间;为什么引入tensor这个概念;

听完那个课程我悟了,tensor作为多维数组来说,更具有高维空间的特性;就拿上面的图片举例子,extremely case 我们取一维向量来表示(铺开),这样就会丢失一些空间的信息,例如绿色的格子和蓝色的某个格子其实是垂直的,仅仅相差一个垂直距离,但是展开为一根棍就很难找到这种关联
向量中某一个格子的数值表示该种颜色的强度
好了我猜你紧接着就要说,啊啊啊这个什么weight 太大了,更新一次太麻烦啦巴拉巴拉的

Do we need "fully connected" in image processing ?

so we need some observations

Obervation1

so not whole image ,but some patterns

Simplification 1


Typical Setting

Obervation 2

Simplification 2 sharing parameters

Typical

有了两种简化的方式了,我们来总结一下我们学到了什么

CNN 的model 的bias比较大

Fully connected Layer jack of all trades master of none

Another Story


这张ppt好好理解一下, 理解不了的话我给你讲讲:

首先按照Convolution 分为上下两个 part 哈,上面那个是由64个fitter (高度/厚度 =1, 因为原始图像的channel =1 是黑白图像,这里我们考虑typical的情况) 分别对原image做卷积得到的;每一个高度可以作为一个feature Map;ok ,然后我们知道 RGB 其实也是一个图像的三个channel 三个 feature Map;那么我们自然而然的认为这个厚度为64的feature map 叠起来的厚吐司 也是一个64channel 的图像;迭代为原始图像,那么下一次进行卷积的时候我们就需要64个厚度为64的fitter,也就是下面的两个64 的不同含义~ ok,打完收工

一个问题,如果fitter 一直等于 3*3 会不会严重丢失全局信息?为什么?

  • 我认为和stride有关,一直有重叠
  • 更直接的解释 从 3 * 3 到 5 * 5

殊途同归

boy 聪明的,比较颜色就好~ 要学会适度自学哦

Observation 3

Simpification 3(Pooling)

subSampling 会丢失一定的信息,随着 计算机上升,下采样逐渐式微

The whole CNN......

Flatten 拉直

Application-- 阿尔法狗

so why CNN?
当成一个图片,然后48个channel 表示该点处的48种情况

more thinking :

CNN 好像没有办法处理影响放大缩小,或者反转的情况;so we need data augmentation ;

Spatial Transformer Layer

相关推荐
产品经理独孤虾3 分钟前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
kfepiza23 分钟前
Debian的`/etc/network/interfaces`的`allow-hotplug`和`auto`对比讲解 笔记250704
linux·服务器·网络·笔记·debian
白杆杆红伞伞2 小时前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫3 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶3 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输3 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
I'm写代码3 小时前
el-tree树形结构笔记
javascript·vue.js·笔记
kebijuelun4 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
Andy杨5 小时前
20250707-4-Kubernetes 集群部署、配置和验证-K8s基本资源概念初_笔记
笔记·容器·kubernetes
吹风看太阳5 小时前
机器学习16-总体架构
人工智能·机器学习