人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目

一、背景介绍

在金融领域,了解客户的信用卡办卡意愿对于银行和金融机构至关重要。借助机器学习技术,我们可以根据客户的历史数据和行为模式预测其是否有办理信用卡的倾向。本项目通过Python中的机器学习库,构建了两个常用的分类模型:随机森林和逻辑回归,来预测客户的信用卡办卡意愿,通过使用Django框架通过构架可视化的方式分析数据。

二、数据准备

首先,我们从MySQL数据库中获取处理后的客户数据。这些数据经过预处理和特征工程,包含了客户的各种特征信息,以及是否流失的标签。

python 复制代码
# 数据库连接和数据获取
import pandas as pd
import pymysql
from data.mapper import host, user, password, database

# 连接MySQL数据库
conn = pymysql.connect(
    host=host,
    user=user,
    password=password,
    database=database
)

# 从MySQL数据库中读取处理后的数据
query = "SELECT * FROM processed_customer_data"
df = pd.read_sql(query, conn)

# 关闭数据库连接
conn.close()

三、模型训练与评估

3.1 随机森林模型

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。我们使用随机森林模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

python 复制代码
# 随机森林模型训练与评估
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# 特征与标签分割
X = df.drop(columns=['Attrition_Flag'])
y = df['Attrition_Flag']

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)

# 随机森林模型训练
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)

# 模型预测
y_pred = rf_model.predict(X_test)

# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

3.2 逻辑回归模型

逻辑回归是一种线性模型,常用于二分类问题。我们同样使用逻辑回归模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

python 复制代码
# 逻辑回归模型训练与评估
from sklearn.linear_model import LogisticRegression

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 逻辑回归模型训练
logreg_model = LogisticRegression()
logreg_model.fit(X_train, y_train)

# 模型预测
y_pred = logreg_model.predict(X_test)

# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

四、数据可视化

我们使用Django作为后端框架实现数据可视化,通过Pyecharts库创建多种图表,以更直观地展示数据分布和模型评估结果。

python 复制代码
# Django视图函数中的数据可视化
from django.shortcuts import render
from pyecharts.charts import Bar, Pie, Line
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, ThemeType

from web.service.task_service import get_custormer_age, get_income_category, get_education_level, get_credit_limit, \
    get_months_inactive_12_mon

def bar_chart(request):
    # 获取客户年龄分布数据
    x, y = get_custormer_age()
    line = (
        Line()
        .add_xaxis([str(age) for age in x])
        .add_yaxis("Count", y)
        .set_global_opts(
            title_opts=opts.TitleOpts(title="客户年龄分布图"),
            xaxis_opts=opts.AxisOpts(name="Age"),
            yaxis_opts=opts.AxisOpts(name="Count"),
        )
    )

    # 获取客户信用卡额度分布数据
    x1, y1 = get_credit_limit()
    line1 = (
        Line()
        .add_xaxis([str(age) for age in x1])
        .add_yaxis("Count", y1)
        .set_global_opts(
            title_opts=opts.TitleOpts(title="客户信用卡额度top10分布图"),
            xaxis_opts=opts.AxisOpts(name="Age"),
            yaxis_opts=opts.AxisOpts(name="Count"),
        )
    )

    # 获取客户非活跃月数分布数据
    bar1 = Bar()
    x1, y1 = get_months_inactive_12_mon()
    bar1.add_xaxis(x1)
    bar1.add_yaxis("客户去年非活跃月数分布", y1)

    # 获取客户收入范围趋势数据
    bar = Bar()
    x, y = get_income_category()
    bar.add_xaxis(x)
    bar.add_yaxis("收入范围趋势图", y)

    # 获取客户教育水平分布数据
    pie = Pie()
    tuple = get_education_level()
    pie.add("教育水平分布图", tuple)

    # 获取图表的JavaScript代码
    line_js = line.render_embed()
    bar_js = bar.render_embed()
    pie_js = pie.render_embed()
    bar1_js = bar1.render_embed()
    line1_js = line1.render_embed()

    return render(request, 'charts/bar_chart.html', {'line': line_js, 'bar': bar_js, 'pie': pie_js, 'line1': line1_js, 'bar1': bar1_js})

五、总结

通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。

相关推荐
羑悻的小杀马特33 分钟前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi4 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5896 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe6 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
ZStack开发者社区7 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算
Spcarrydoinb8 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉