Opencv | 基于ndarray的基本操作

这里写目录标题

  • [一. Opencv 基于ndarray的基本操作](#一. Opencv 基于ndarray的基本操作)
    • [1. 浅拷贝](#1. 浅拷贝)
    • [2. np.copy ( ) 深拷贝](#2. np.copy ( ) 深拷贝)
    • [3. 堆叠](#3. 堆叠)
      • [3.1 np.vstack ( ) 垂直方向堆叠](#3.1 np.vstack ( ) 垂直方向堆叠)
      • [3.2 np.hstack ( ) 水平方向堆叠](#3.2 np.hstack ( ) 水平方向堆叠)
    • [4. numpy创建图像](#4. numpy创建图像)
    • [5 np.transpose ( ) 更改维度顺序](#5 np.transpose ( ) 更改维度顺序)
    • [6. cv.resize ( ) 放大缩小](#6. cv.resize ( ) 放大缩小)
    • [7. np.clip ( )](#7. np.clip ( ))

一. Opencv 基于ndarray的基本操作

1. 浅拷贝

复制代码
	拷贝前后的两张图片:变化一致

2. np.copy ( ) 深拷贝

复制代码
	拷贝前后的两张图片:互不影响

3. 堆叠

3.1 np.vstack ( ) 垂直方向堆叠

复制代码
	将数组垂直堆叠,形成一个新的数组

3.2 np.hstack ( ) 水平方向堆叠

复制代码
	将数组水平堆叠,形成一个新的数组

4. numpy创建图像

复制代码
	numpy通过相关创建数组语法,指定图像宽高通道数和类型(一般为unit8),创建图像

5 np.transpose ( ) 更改维度顺序

复制代码
	np.transpose(a, axes=None)
	参数:
		a:ndarray数据
		axes:维度,默认情况下为颠倒所有维度
	作用:
		对ndarray数据进行转置
	【注意】
		若想对一个矩阵进行转置,该矩阵必须为方阵

6. cv.resize ( ) 放大缩小

复制代码
	resize(src,dsize[,dst[,fx[,fy,interpolation]]]])
	必须参数:
		src:需要缩放的图片
		dsize:
			【可能会发生形变】
			缩放之后的图片大小,元组和列表表示均可
			注意:它是必选参数,参数可以是None
	可选参数:
		dst: 
			缩放之后的输出图片(该参数C++才用)
			注意:python语法中输出图片直接进行赋值
		fx,fy:
			x轴和y轴的缩放比,即宽度和高度的缩放比(倍数)
			特别注意,使用fx,fy时:
				fx,fy必须一起出现,同时必须dsize=None;否则fx,fy不生效
		interpolation:
			插值算法,缩小没有插值问题,放大存在该问题
			主要有以下几种:
				INTER_NEAREST,临近插值,速度块,效果差
				INTER_LINEAR,双线性插值,使用原图中的4个点进行插值,默认
				INTER_CUBIC,三次插值,原图中的16个点
				INTER_AREA,区域插值,效果最好,计算时间最长

7. np.clip ( )

复制代码
	np.clip ( )
	参数:
		a:需要被裁剪的数组
		a_min:元素的最小值
		a_max:元素的最大值
		out:
			指定一个输出数组,用于存放结果
			如果不指定,则会创建一个新的数组
	作用:
		用于将数组中的元素限制在指定的最小值和最大值之间

感谢阅读🌼

如果喜欢这篇文章,记得点赞👍和转发🔄哦!

有任何想法或问题,欢迎留言交流💬,我们下次见!

本文相关代码存放位置

Opencv 基于ndarray的基本操作

祝愉快🌟!


相关推荐
MidJourney中文版21 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上1 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
视觉人机器视觉1 小时前
Visual Studio2022和C++opencv的配置保姆级教程
c++·opencv·visual studio
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
burg_xun2 小时前
【Vibe Coding 实战】我如何用 AI 把一张草图变成了能跑的应用
人工智能
酌沧2 小时前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师2 小时前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员