Opencv | 基于ndarray的基本操作

这里写目录标题

  • [一. Opencv 基于ndarray的基本操作](#一. Opencv 基于ndarray的基本操作)
    • [1. 浅拷贝](#1. 浅拷贝)
    • [2. np.copy ( ) 深拷贝](#2. np.copy ( ) 深拷贝)
    • [3. 堆叠](#3. 堆叠)
      • [3.1 np.vstack ( ) 垂直方向堆叠](#3.1 np.vstack ( ) 垂直方向堆叠)
      • [3.2 np.hstack ( ) 水平方向堆叠](#3.2 np.hstack ( ) 水平方向堆叠)
    • [4. numpy创建图像](#4. numpy创建图像)
    • [5 np.transpose ( ) 更改维度顺序](#5 np.transpose ( ) 更改维度顺序)
    • [6. cv.resize ( ) 放大缩小](#6. cv.resize ( ) 放大缩小)
    • [7. np.clip ( )](#7. np.clip ( ))

一. Opencv 基于ndarray的基本操作

1. 浅拷贝

复制代码
	拷贝前后的两张图片:变化一致

2. np.copy ( ) 深拷贝

复制代码
	拷贝前后的两张图片:互不影响

3. 堆叠

3.1 np.vstack ( ) 垂直方向堆叠

复制代码
	将数组垂直堆叠,形成一个新的数组

3.2 np.hstack ( ) 水平方向堆叠

复制代码
	将数组水平堆叠,形成一个新的数组

4. numpy创建图像

复制代码
	numpy通过相关创建数组语法,指定图像宽高通道数和类型(一般为unit8),创建图像

5 np.transpose ( ) 更改维度顺序

复制代码
	np.transpose(a, axes=None)
	参数:
		a:ndarray数据
		axes:维度,默认情况下为颠倒所有维度
	作用:
		对ndarray数据进行转置
	【注意】
		若想对一个矩阵进行转置,该矩阵必须为方阵

6. cv.resize ( ) 放大缩小

复制代码
	resize(src,dsize[,dst[,fx[,fy,interpolation]]]])
	必须参数:
		src:需要缩放的图片
		dsize:
			【可能会发生形变】
			缩放之后的图片大小,元组和列表表示均可
			注意:它是必选参数,参数可以是None
	可选参数:
		dst: 
			缩放之后的输出图片(该参数C++才用)
			注意:python语法中输出图片直接进行赋值
		fx,fy:
			x轴和y轴的缩放比,即宽度和高度的缩放比(倍数)
			特别注意,使用fx,fy时:
				fx,fy必须一起出现,同时必须dsize=None;否则fx,fy不生效
		interpolation:
			插值算法,缩小没有插值问题,放大存在该问题
			主要有以下几种:
				INTER_NEAREST,临近插值,速度块,效果差
				INTER_LINEAR,双线性插值,使用原图中的4个点进行插值,默认
				INTER_CUBIC,三次插值,原图中的16个点
				INTER_AREA,区域插值,效果最好,计算时间最长

7. np.clip ( )

复制代码
	np.clip ( )
	参数:
		a:需要被裁剪的数组
		a_min:元素的最小值
		a_max:元素的最大值
		out:
			指定一个输出数组,用于存放结果
			如果不指定,则会创建一个新的数组
	作用:
		用于将数组中的元素限制在指定的最小值和最大值之间

感谢阅读🌼

如果喜欢这篇文章,记得点赞👍和转发🔄哦!

有任何想法或问题,欢迎留言交流💬,我们下次见!

本文相关代码存放位置

Opencv 基于ndarray的基本操作

祝愉快🌟!


相关推荐
风栖柳白杨13 小时前
【语音识别】SenseVoice非流式改流式
人工智能·语音识别
Aloudata13 小时前
企业落地 AI 数据分析,如何做好敏感数据安全防护?
人工智能·安全·数据挖掘·数据分析·chatbi·智能问数·dataagent
安达发公司13 小时前
安达发|煤炭行业APS高级排产:开启高效生产新时代
大数据·人工智能·aps高级排程·安达发aps·车间排产软件·aps高级排产
中科天工13 小时前
如何实现工业4.0智能制造的自动化包装解决方案?
大数据·人工智能·智能
ai_top_trends13 小时前
AI 生成 PPT 工具横评:效率、质量、稳定性一次说清
人工智能·python·powerpoint
三千世界00613 小时前
Claude Code Agent Skills 自动发现原理详解
人工智能·ai·大模型·agent·claude·原理
云和恩墨13 小时前
数据库运维的下一步:Bethune X以AI实现从可观测到可处置
人工智能·aiops·数据库监控·数据库运维·数据库巡检
飞睿科技13 小时前
探讨雷达在智能家居与消费电子领域的应用
人工智能·嵌入式硬件·智能家居·雷达·毫米波雷达
沛沛老爹13 小时前
Web转AI决策篇 Agent Skills vs MCP:选型决策矩阵与评估标准
java·前端·人工智能·架构·rag·web转型
Baihai_IDP13 小时前
如何减少单智能体输出结果的不确定性?利用并行智能体的“集体智慧”
人工智能·面试·llm