Opencv | 基于ndarray的基本操作

这里写目录标题

  • [一. Opencv 基于ndarray的基本操作](#一. Opencv 基于ndarray的基本操作)
    • [1. 浅拷贝](#1. 浅拷贝)
    • [2. np.copy ( ) 深拷贝](#2. np.copy ( ) 深拷贝)
    • [3. 堆叠](#3. 堆叠)
      • [3.1 np.vstack ( ) 垂直方向堆叠](#3.1 np.vstack ( ) 垂直方向堆叠)
      • [3.2 np.hstack ( ) 水平方向堆叠](#3.2 np.hstack ( ) 水平方向堆叠)
    • [4. numpy创建图像](#4. numpy创建图像)
    • [5 np.transpose ( ) 更改维度顺序](#5 np.transpose ( ) 更改维度顺序)
    • [6. cv.resize ( ) 放大缩小](#6. cv.resize ( ) 放大缩小)
    • [7. np.clip ( )](#7. np.clip ( ))

一. Opencv 基于ndarray的基本操作

1. 浅拷贝

复制代码
	拷贝前后的两张图片:变化一致

2. np.copy ( ) 深拷贝

复制代码
	拷贝前后的两张图片:互不影响

3. 堆叠

3.1 np.vstack ( ) 垂直方向堆叠

复制代码
	将数组垂直堆叠,形成一个新的数组

3.2 np.hstack ( ) 水平方向堆叠

复制代码
	将数组水平堆叠,形成一个新的数组

4. numpy创建图像

复制代码
	numpy通过相关创建数组语法,指定图像宽高通道数和类型(一般为unit8),创建图像

5 np.transpose ( ) 更改维度顺序

复制代码
	np.transpose(a, axes=None)
	参数:
		a:ndarray数据
		axes:维度,默认情况下为颠倒所有维度
	作用:
		对ndarray数据进行转置
	【注意】
		若想对一个矩阵进行转置,该矩阵必须为方阵

6. cv.resize ( ) 放大缩小

复制代码
	resize(src,dsize[,dst[,fx[,fy,interpolation]]]])
	必须参数:
		src:需要缩放的图片
		dsize:
			【可能会发生形变】
			缩放之后的图片大小,元组和列表表示均可
			注意:它是必选参数,参数可以是None
	可选参数:
		dst: 
			缩放之后的输出图片(该参数C++才用)
			注意:python语法中输出图片直接进行赋值
		fx,fy:
			x轴和y轴的缩放比,即宽度和高度的缩放比(倍数)
			特别注意,使用fx,fy时:
				fx,fy必须一起出现,同时必须dsize=None;否则fx,fy不生效
		interpolation:
			插值算法,缩小没有插值问题,放大存在该问题
			主要有以下几种:
				INTER_NEAREST,临近插值,速度块,效果差
				INTER_LINEAR,双线性插值,使用原图中的4个点进行插值,默认
				INTER_CUBIC,三次插值,原图中的16个点
				INTER_AREA,区域插值,效果最好,计算时间最长

7. np.clip ( )

复制代码
	np.clip ( )
	参数:
		a:需要被裁剪的数组
		a_min:元素的最小值
		a_max:元素的最大值
		out:
			指定一个输出数组,用于存放结果
			如果不指定,则会创建一个新的数组
	作用:
		用于将数组中的元素限制在指定的最小值和最大值之间

感谢阅读🌼

如果喜欢这篇文章,记得点赞👍和转发🔄哦!

有任何想法或问题,欢迎留言交流💬,我们下次见!

本文相关代码存放位置

Opencv 基于ndarray的基本操作

祝愉快🌟!


相关推荐
IT_陈寒12 分钟前
Spring Boot 3.2震撼发布:5个必知的新特性让你开发效率提升50%
前端·人工智能·后端
Mintopia38 分钟前
零信任架构下的 WebAIGC 服务安全技术升级方向
前端·人工智能·trae
Danceful_YJ5 小时前
33.Transformer架构
人工智能·pytorch·深度学习
张人玉6 小时前
Cognex VisionPro 相机工具集成代码分析笔记
数码相机·计算机视觉·vsionpro
美狐美颜SDK开放平台7 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩8 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly8 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962188 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉9 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会9 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能