大语言模型总结整理(不定期更新)

《【快捷部署】016_Ollama(CPU only版)》 介绍了如何一键快捷部署Ollama,今天就来看一下受欢迎的模型。

模型 简介
gemma Gemma是由谷歌及其DeepMind团队开发的一个新的开放模型。 参数:2B(1.6GB)、7B(4.8GB)
llava LLaVA是一种多模式模型,它结合了视觉编码器和Vicuna,用于通用视觉和语言理解,实现了模仿多模式GPT-4精神的令人印象深刻的聊天功能。 参数:7B(4.7GB)、13B(8.0GB)、34B(20GB)
qwen Qwen是阿里云基于transformer的一系列大型语言模型,在大量数据上进行预训练,包括网络文本、书籍、代码等。 参数:0.5B、1.8B、4B (default)、7B、14B、 32B (new) 、 72B
llama2 Llama 2由Meta Platforms发布。该模型默认情况下支持4096的上下文长度。Llama 2聊天模型根据超过100万条人工注释进行了微调,专为聊天而设计。 参数:7B(3.8GB)、13B(7.4GB)、70B(39GB)
deepseek-coder DeepSeek编码程序是从零开始训练的87%的代码和13%的英语和中文自然语言。每个模型都在2万亿个tokens上进行了预训练。 参数:1.3B(0.8GB)、6.7B(3.8GB)、33B(19GB)
yi 零一万物出品 参数:6B(3.5GB)、34B(19GB)
phi 由微软研究公司开发的2.7B语言模型,展示了卓越的推理和语言理解能力。 参数:2.7B(1.6GB)
THUDM/GLM系列 智谱清言,https://chatglm.cn,知名的ChatGLM-6B、GLM-130B,以及最新的ChatGLM3-6B
nomic-embed-text 大上下文嵌入模型
grok-1 Grok-1,马斯克xAI,314B,这个的使用门槛就比较高了。

点击模型文字,进入ollama library。选择对应的模型,就可以看到下载的命令。

注意:运行7B模型至少需要8 GB RAM, 13B 模型至少需要16 GB RAM, 33B 需要 32 GB。

更多模型请参见:

https://ollama.com/library

https://huggingface.co/models

大模型榜单:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

往期精彩内容推荐

👉 【快捷部署】016_Ollama(CPU only版)

👉 【快捷部署】015_Minio(latest)

👉 【快捷部署】014_elasticsearch(7.6)

👉 「快速部署」第一期清单

👉 云原生:5分钟了解一下Kubernetes是什么

相关推荐
weixin_377634844 分钟前
【强化学习】RLMT强制 CoT提升训练效果
人工智能·算法·机器学习
GPUStack4 分钟前
0.9B PaddleOCR-VL 登顶 SOTA!GPUStack 高效推理部署实战指南
大模型·ocr·paddleocr·多模态模型·模型推理
Francek Chen12 分钟前
【深度学习计算机视觉】14:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
人工智能·pytorch·深度学习·计算机视觉·kaggle·imagenet dogs
dxnb2215 分钟前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
渡我白衣32 分钟前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
Kay_Liang35 分钟前
大语言模型如何精准调用函数—— Function Calling 系统笔记
java·大数据·spring boot·笔记·ai·langchain·tools
飞哥数智坊1 小时前
Claude Skills 实测体验:不用翻墙,GLM-4.6 也能玩转
人工智能·claude·chatglm (智谱)
FreeBuf_1 小时前
微软数字防御报告:AI成为新型威胁,自动化漏洞利用技术颠覆传统
人工智能·microsoft·自动化
IT_陈寒1 小时前
Vue3性能优化实战:这7个技巧让我的应用加载速度提升50%!
前端·人工智能·后端
GIS数据转换器1 小时前
带高度多边形,生成3D建筑模型,支持多种颜色或纹理的OBJ、GLTF、3DTiles格式
数据库·人工智能·机器学习·3d·重构·无人机