大语言模型总结整理(不定期更新)

《【快捷部署】016_Ollama(CPU only版)》 介绍了如何一键快捷部署Ollama,今天就来看一下受欢迎的模型。

模型 简介
gemma Gemma是由谷歌及其DeepMind团队开发的一个新的开放模型。 参数:2B(1.6GB)、7B(4.8GB)
llava LLaVA是一种多模式模型,它结合了视觉编码器和Vicuna,用于通用视觉和语言理解,实现了模仿多模式GPT-4精神的令人印象深刻的聊天功能。 参数:7B(4.7GB)、13B(8.0GB)、34B(20GB)
qwen Qwen是阿里云基于transformer的一系列大型语言模型,在大量数据上进行预训练,包括网络文本、书籍、代码等。 参数:0.5B、1.8B、4B (default)、7B、14B、 32B (new) 、 72B
llama2 Llama 2由Meta Platforms发布。该模型默认情况下支持4096的上下文长度。Llama 2聊天模型根据超过100万条人工注释进行了微调,专为聊天而设计。 参数:7B(3.8GB)、13B(7.4GB)、70B(39GB)
deepseek-coder DeepSeek编码程序是从零开始训练的87%的代码和13%的英语和中文自然语言。每个模型都在2万亿个tokens上进行了预训练。 参数:1.3B(0.8GB)、6.7B(3.8GB)、33B(19GB)
yi 零一万物出品 参数:6B(3.5GB)、34B(19GB)
phi 由微软研究公司开发的2.7B语言模型,展示了卓越的推理和语言理解能力。 参数:2.7B(1.6GB)
THUDM/GLM系列 智谱清言,https://chatglm.cn,知名的ChatGLM-6B、GLM-130B,以及最新的ChatGLM3-6B
nomic-embed-text 大上下文嵌入模型
grok-1 Grok-1,马斯克xAI,314B,这个的使用门槛就比较高了。

点击模型文字,进入ollama library。选择对应的模型,就可以看到下载的命令。

注意:运行7B模型至少需要8 GB RAM, 13B 模型至少需要16 GB RAM, 33B 需要 32 GB。

更多模型请参见:

https://ollama.com/library

https://huggingface.co/models

大模型榜单:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

往期精彩内容推荐

👉 【快捷部署】016_Ollama(CPU only版)

👉 【快捷部署】015_Minio(latest)

👉 【快捷部署】014_elasticsearch(7.6)

👉 「快速部署」第一期清单

👉 云原生:5分钟了解一下Kubernetes是什么

相关推荐
AI周红伟2 分钟前
周红伟:中国信息通信研究院院长余晓晖关于智算:《算力互联互通行动计划》和《关于深入实施“人工智能+”行动的意见》的意见
人工智能
橘子师兄33 分钟前
C++AI大模型接入SDK—ChatSDK封装
开发语言·c++·人工智能·后端
桂花很香,旭很美34 分钟前
基于 MCP 的 LLM Agent 实战:架构设计与工具编排
人工智能·nlp
Christo335 分钟前
TFS-2026《Fuzzy Multi-Subspace Clustering 》
人工智能·算法·机器学习·数据挖掘
五点钟科技43 分钟前
Deepseek-OCR:《DeepSeek-OCR: Contexts Optical Compression》 论文要点解读
人工智能·llm·ocr·论文·大语言模型·deepseek·deepseek-ocr
人工智能AI技术1 小时前
【C#程序员入门AI】本地大模型落地:用Ollama+C#在本地运行Llama 3/Phi-3,无需云端
人工智能·c#
Agentcometoo1 小时前
智能体来了从 0 到 1:规则、流程与模型的工程化协作顺序
人工智能·从0到1·智能体来了·时代趋势
工程师老罗1 小时前
什么是目标检测?
人工智能·目标检测·计算机视觉
jarreyer1 小时前
【AI 编程工具】
人工智能·编程工具
阿杰学AI1 小时前
AI核心知识75——大语言模型之MAS (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·多智能体协作·mas