智谱AI通用大模型:官方开放API开发基础

目录

一、模型介绍

1.1主要模型

[1.2 计费单价](#1.2 计费单价)

二、前置条件

[2.1 申请API Key](#2.1 申请API Key)

三、基于SDK开发

[3.1 Maven引入SDK](#3.1 Maven引入SDK)

[3.2 代码实现](#3.2 代码实现)

[3.3 运行代码](#3.3 运行代码)


一、模型介绍

GLM-4是智谱AI发布的新一代基座大模型,整体性能相比GLM3提升60%,支持128K上下文,可根据用户意图自主理解和规划复杂指令、完成复杂任务。

1.1主要模型

模型名称 模型简介 上下文长度
GLM-4 提供了更强大的问答和文本生成能力。适合于复杂的对话交互和深度内容创作设计的场景。 128K
GLM-4V 实现了视觉语言特征的深度融合,支持视觉问答、图像字幕、视觉定位、复杂目标检测等各类图像理解任务 2K
GLM-3-Turbo 适用于对知识量、推理能力、创造力要求较高的场景,比如广告文案、小说写作、知识类写作、代码生成等。 128K

1.2 计费单价

Token是模型用来表示自然语言文本的基本单位,可以直观的理解为"字"或"词";通常1个中文词语、1个英文单词、1个数字或1个符号计为 1 个token。

一般情况下ChatGLM模型中token和字数的换算比例约为1:1.6,但因为不同模型的分词不同,所以换算比例也存在差异,每一次实际处理token数量以模型返回为准,您可以从返回结果的usage中查看。

模型服务 模型名称 计费单价
通用大模型 GLM-4 0.1元 / 千tokens
通用大模型 GLM-4V 0.1元 / 千tokens
通用大模型 GLM-3-Turbo 0.005元 / 千tokens

实际收费情况请关注官方信息。

二、前置条件

2.1 申请API Key

所有 API 使用 API Key 进行身份验证。可以访问智谱AI开放平台API Keys 页面查找将在请求中使用的 API Key。

三、基于SDK开发

3.1 Maven引入SDK

XML 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.yichenkeji</groupId>
    <artifactId>yichen-demo-glm</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <!-- https://mvnrepository.com/artifact/cn.bigmodel.openapi/oapi-java-sdk -->
        <dependency>
            <groupId>cn.bigmodel.openapi</groupId>
            <artifactId>oapi-java-sdk</artifactId>
            <version>release-V4-2.0.2</version>
        </dependency>

    </dependencies>
</project>

3.2 代码实现

java 复制代码
package com.yichenkeji.demo.glm;


import com.alibaba.fastjson.JSON;
import com.zhipu.oapi.ClientV4;
import com.zhipu.oapi.Constants;
import com.zhipu.oapi.service.v4.model.ChatCompletionRequest;
import com.zhipu.oapi.service.v4.model.ChatMessage;
import com.zhipu.oapi.service.v4.model.ChatMessageRole;
import com.zhipu.oapi.service.v4.model.ModelApiResponse;

import java.util.ArrayList;
import java.util.List;

public class GlmMain {
    public static final String API_KEY = "你的APK KEY";
    private static final String requestIdTemplate = "mycompany-%d";
    public static String chat(String message) {
        ClientV4 client = new ClientV4.Builder(API_KEY).build();
        List<ChatMessage> messages = new ArrayList<>();
        //构建消息对象
        ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), message);
        messages.add(chatMessage);
        //构建请求id
        String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
        ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
                .model(Constants.ModelChatGLM4)//设置模式
                .stream(Boolean.FALSE)
                .invokeMethod(Constants.invokeMethod)
                .messages(messages)
                .requestId(requestId)
                .build();
        ModelApiResponse invokeModelApiResp = client.invokeModelApi(chatCompletionRequest);
        return JSON.toJSONString(invokeModelApiResp);
    }


    public static void main(String[] args) {
        String result = chat("请做一下自我介绍");
        System.out.println(result);
    }
}

3.3 运行代码

相关推荐
deephub1 天前
LEC: 基于Transformer中间层隐藏状态的高效特征提取与内容安全分类方法
人工智能·深度学习·transformer·大语言模型·特征提取
流穿2 天前
WebSocket vs SSE:实时通信技术的对比与选择
网络·websocket·网络协议·大语言模型·sse
python_知世3 天前
基于LLaMA-Factory微调Llama3
人工智能·深度学习·程序人生·自然语言处理·大语言模型·llama·大模型微调
知来者逆3 天前
基于大语言模型的多代理下一代制造系统能灵活动态管理制造资源的高效调度方法
人工智能·深度学习·自然语言处理·llm·大语言模型·制造
知来者逆9 天前
MSciNLI—— 针对科学自然语言推理任务提出的多样化数据集用于训练语言模型和大规模语言模型建立基线
人工智能·深度学习·机器学习·语言模型·自然语言处理·大语言模型
知来者逆10 天前
LAVE——基于大语言模型的新型代理辅助视频编辑工具允许用户根据自己的编辑风格进行调整
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·大语言模型·智能算法
木亦汐丫12 天前
【大模型系列篇】LLaMA-Factory大模型微调实践 - 从零开始
lora·大模型·微调·chatglm·llama·llama-factory
少喝冰美式13 天前
docker-compose本地部署FastGPT与简单使用
深度学习·docker·自然语言处理·大模型·llm·大语言模型·fastgpt
网络研究院14 天前
OpenAI 发布 o1 LLM,推出 ChatGPT Pro
人工智能·chatgpt·llm·openai·大语言模型
知来者逆14 天前
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
人工智能·机器学习·机器人·数据集·大语言模型