【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎:

1. 导入数据集

python 复制代码
from sklearn.datasets import fetch_20newsgroups

newsgroups = fetch_20newsgroups()

print(f'Number of documents: {len(newsgroups.data)}')
print(f'Sample document:\n{newsgroups.data[0]}')

2. 向量化单词

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
count.fit(newsgroups.data)
show_vocabulary(count)

print(f'Size of vocabulary: {len(count.get_feature_names_out())}')

def show_vocabulary(vectorizer):
    words = vectorizer.get_feature_names_out()

    print(f'Vocabulary size: {len(words)} words')

    # we can print ~10 words per line
    for l in np.array_split(words, math.ceil(len(words) / 10)):
        print(''.join([f'{x:<15}' for x in l]))

3. 搜索引擎

python 复制代码
#将语料库进行转化
corpus_bow = count.transform(newsgroups.data)

#提供用户输入,对输入内容进行转化为BoW - Bag of word
query = input("Type your query: ")
query_bow = count.transform([query])

from sklearn.metrics.pairwise import cosine_similarity

#比较输入内容与语料库中的相似度
similarity_matrix = cosine_similarity(corpus_bow, query_bow)
print(f'Similarity Matrix Shape: {similarity_matrix.shape}')

得到Similarity_matrix一共有N行,表示语料库中的文档数。还有一列,代表相似度系数。

第K行的相似度系数,代表用户输入的文本与语料库中第K个文档的相似程度。

我们对相似度矩阵进行排序:

python 复制代码
similarities = pd.Series(similarity_matrix[:, 0])
similarities.head(10)

那么和用户输入最相关的文档就是第一个了!

python 复制代码
print('Best document:')
print(newsgroups.data[top_10.index[0]])

结论:本文利用Cosine_similarity比较文档的相似度,从语料库找出最佳匹配的文档。

如果对单词的向量化,BoW概念有问题可以看下我的另一篇文章。

CSDN

下面一篇文章我会具体分析Cosine_similarity的原理,敬请关注!

相关推荐
白熊188几秒前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
nenchoumi31193 分钟前
VLA 论文精读(十六)FP3: A 3D Foundation Policy for Robotic Manipulation
论文阅读·人工智能·笔记·学习·vln
后端小肥肠13 分钟前
文案号搞钱潜规则:日入四位数的Coze工作流我跑通了
人工智能·coze
LCHub低代码社区14 分钟前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码
-曾牛15 分钟前
Spring AI 快速入门:从环境搭建到核心组件集成
java·人工智能·spring·ai·大模型·spring ai·开发环境搭建
阿川201518 分钟前
云智融合普惠大模型AI,政务服务重构数智化路径
人工智能·华为云·政务·deepseek
自由鬼1 小时前
开源AI开发工具:OpenAI Codex CLI
人工智能·ai·开源·软件构建·开源软件·个人开发
生信碱移1 小时前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化
一个数据大开发1 小时前
解读《数据资产质量评估实施规则》:企业数据资产认证落地的关键指南
大数据·数据库·人工智能
云卓SKYDROID1 小时前
无人机环境适应性与稳定性技术要点!
人工智能·无人机·科普·高科技·云卓科技