【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎:

1. 导入数据集

python 复制代码
from sklearn.datasets import fetch_20newsgroups

newsgroups = fetch_20newsgroups()

print(f'Number of documents: {len(newsgroups.data)}')
print(f'Sample document:\n{newsgroups.data[0]}')

2. 向量化单词

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
count.fit(newsgroups.data)
show_vocabulary(count)

print(f'Size of vocabulary: {len(count.get_feature_names_out())}')

def show_vocabulary(vectorizer):
    words = vectorizer.get_feature_names_out()

    print(f'Vocabulary size: {len(words)} words')

    # we can print ~10 words per line
    for l in np.array_split(words, math.ceil(len(words) / 10)):
        print(''.join([f'{x:<15}' for x in l]))

3. 搜索引擎

python 复制代码
#将语料库进行转化
corpus_bow = count.transform(newsgroups.data)

#提供用户输入,对输入内容进行转化为BoW - Bag of word
query = input("Type your query: ")
query_bow = count.transform([query])

from sklearn.metrics.pairwise import cosine_similarity

#比较输入内容与语料库中的相似度
similarity_matrix = cosine_similarity(corpus_bow, query_bow)
print(f'Similarity Matrix Shape: {similarity_matrix.shape}')

得到Similarity_matrix一共有N行,表示语料库中的文档数。还有一列,代表相似度系数。

第K行的相似度系数,代表用户输入的文本与语料库中第K个文档的相似程度。

我们对相似度矩阵进行排序:

python 复制代码
similarities = pd.Series(similarity_matrix[:, 0])
similarities.head(10)

那么和用户输入最相关的文档就是第一个了!

python 复制代码
print('Best document:')
print(newsgroups.data[top_10.index[0]])

结论:本文利用Cosine_similarity比较文档的相似度,从语料库找出最佳匹配的文档。

如果对单词的向量化,BoW概念有问题可以看下我的另一篇文章。

CSDN

下面一篇文章我会具体分析Cosine_similarity的原理,敬请关注!

相关推荐
天云数据4 分钟前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi7777733 分钟前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔1 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)1 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家1 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata1 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub2 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19912 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann
宁远x2 小时前
Flash Attention原理介绍与使用方法
人工智能·深度学习·机器学习