【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎:

1. 导入数据集

python 复制代码
from sklearn.datasets import fetch_20newsgroups

newsgroups = fetch_20newsgroups()

print(f'Number of documents: {len(newsgroups.data)}')
print(f'Sample document:\n{newsgroups.data[0]}')

2. 向量化单词

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
count.fit(newsgroups.data)
show_vocabulary(count)

print(f'Size of vocabulary: {len(count.get_feature_names_out())}')

def show_vocabulary(vectorizer):
    words = vectorizer.get_feature_names_out()

    print(f'Vocabulary size: {len(words)} words')

    # we can print ~10 words per line
    for l in np.array_split(words, math.ceil(len(words) / 10)):
        print(''.join([f'{x:<15}' for x in l]))

3. 搜索引擎

python 复制代码
#将语料库进行转化
corpus_bow = count.transform(newsgroups.data)

#提供用户输入,对输入内容进行转化为BoW - Bag of word
query = input("Type your query: ")
query_bow = count.transform([query])

from sklearn.metrics.pairwise import cosine_similarity

#比较输入内容与语料库中的相似度
similarity_matrix = cosine_similarity(corpus_bow, query_bow)
print(f'Similarity Matrix Shape: {similarity_matrix.shape}')

得到Similarity_matrix一共有N行,表示语料库中的文档数。还有一列,代表相似度系数。

第K行的相似度系数,代表用户输入的文本与语料库中第K个文档的相似程度。

我们对相似度矩阵进行排序:

python 复制代码
similarities = pd.Series(similarity_matrix[:, 0])
similarities.head(10)

那么和用户输入最相关的文档就是第一个了!

python 复制代码
print('Best document:')
print(newsgroups.data[top_10.index[0]])

结论:本文利用Cosine_similarity比较文档的相似度,从语料库找出最佳匹配的文档。

如果对单词的向量化,BoW概念有问题可以看下我的另一篇文章。

CSDN

下面一篇文章我会具体分析Cosine_similarity的原理,敬请关注!

相关推荐
张拭心4 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩5 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.1186 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751286 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技6 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe7 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen7 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿7 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫7 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
汽车仪器仪表相关领域8 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试