刷题DAY56 | LeetCode 583-两个字符串的删除操作 72-编辑距离

583 两个字符串的删除操作(medium)

给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。

每步 可以删除任意一个字符串中的一个字符。

代码实现1(正向思考):

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

本题和1143.最长公共子序列基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码实现2:

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

详细解析:
思路视频
代码实现文章


72 编辑距离(medium)

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

代码实现:

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

详细解析:
思路视频
代码实现文章

相关推荐
Tisfy几秒前
LeetCode 0085.最大矩形:单调栈
算法·leetcode·题解·单调栈
oioihoii几秒前
Protocol Buffers 编码原理深度解析
c++
消失的旧时光-19431 分钟前
函数指针 + 结构体 = C 语言的“对象模型”?——从 C 到 C++ / Java 的本质统一
linux·c语言·开发语言·c++·c
mit6.8242 分钟前
出入度|bfs|状压dp
算法
!停2 分钟前
C语言栈和队列的实现
开发语言·数据结构
hweiyu003 分钟前
强连通分量算法:Kosaraju算法
算法·深度优先
源代码•宸3 分钟前
Golang语法进阶(定时器)
开发语言·经验分享·后端·算法·golang·timer·ticker
郝学胜-神的一滴5 分钟前
Linux系统编程:深入理解读写锁的原理与应用
linux·服务器·开发语言·c++·程序人生
Larry_Yanan6 分钟前
Qt多进程(十一)Linux下socket通信
linux·开发语言·c++·qt
mit6.8249 分钟前
逆向思维|memo
算法