刷题DAY56 | LeetCode 583-两个字符串的删除操作 72-编辑距离

583 两个字符串的删除操作(medium)

给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。

每步 可以删除任意一个字符串中的一个字符。

代码实现1(正向思考):

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

本题和1143.最长公共子序列基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码实现2:

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

详细解析:
思路视频
代码实现文章


72 编辑距离(medium)

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

代码实现:

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

详细解析:
思路视频
代码实现文章

相关推荐
码农编程录1 小时前
【c/c++3】类和对象,vector容器,类继承和多态,systemd,std&boost
c++
martian6652 小时前
支持向量机(SVM)深度解析:从数学根基到工程实践
算法·机器学习·支持向量机
孟大本事要学习2 小时前
算法19天|回溯算法:理论基础、组合、组合总和Ⅲ、电话号码的字母组合
算法
SuperW2 小时前
数据结构——队列
数据结构
??tobenewyorker2 小时前
力扣打卡第二十一天 中后遍历+中前遍历 构造二叉树
数据结构·c++·算法·leetcode
蓝澈11212 小时前
迪杰斯特拉算法之解决单源最短路径问题
java·数据结构
贾全3 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
GIS小天3 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
oioihoii3 小时前
C++11 forward_list 从基础到精通:原理、实践与性能优化
c++·性能优化·list
满分观察网友z3 小时前
开发者的“右”眼:一个树问题如何拯救我的UI设计(199. 二叉树的右视图)
算法