刷题DAY56 | LeetCode 583-两个字符串的删除操作 72-编辑距离

583 两个字符串的删除操作(medium)

给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。

每步 可以删除任意一个字符串中的一个字符。

代码实现1(正向思考):

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

本题和1143.最长公共子序列基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码实现2:

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

详细解析:
思路视频
代码实现文章


72 编辑距离(medium)

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

代码实现:

cpp 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

详细解析:
思路视频
代码实现文章

相关推荐
浮灯Foden23 分钟前
算法-每日一题(DAY13)两数之和
开发语言·数据结构·c++·算法·leetcode·面试·散列表
淡海水36 分钟前
【原理】Struct 和 Class 辨析
开发语言·c++·c#·struct·class
西工程小巴1 小时前
实践笔记-VSCode与IDE同步问题解决指南;程序总是进入中断服务程序。
c语言·算法·嵌入式
Tina学编程1 小时前
48Days-Day19 | ISBN号,kotori和迷宫,矩阵最长递增路径
java·算法
Moonbit1 小时前
MoonBit Perals Vol.06: MoonBit 与 LLVM 共舞 (上):编译前端实现
后端·算法·编程语言
执子手 吹散苍茫茫烟波2 小时前
leetcode415. 字符串相加
java·leetcode·字符串
青草地溪水旁2 小时前
UML函数原型中stereotype的含义,有啥用?
c++·uml
青草地溪水旁2 小时前
UML函数原型中guard的含义,有啥用?
c++·uml
百度Geek说3 小时前
第一!百度智能云领跑视觉大模型赛道
算法
big_eleven3 小时前
轻松掌握数据结构:二叉树
后端·算法·面试