卷积神经网络(CNN)

一、什么是卷积神经网络

二、结构

卷积神经网络的基本结构由以下几个部分组成:输入层(input layer),卷积层(convolution layer),池化层(pooling layer),激活函数层和全连接层(full-connection layer)。下面以图像分类任务简单介绍一下卷积神经网络结构,具体结构如下图所示。

输入层

在处理图像的CNN中,输入层一般代表了一张图片的像素矩阵。可以用三维矩阵代表一张图片。三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道。比如黑白图片的深度为1,而在RGB色彩模式下,图像的深度为3。

卷积层

卷积神经网络的核心是卷积层,卷积层的核心部分是卷积操作。对图像和滤波矩阵做内积(逐个元素相乘再求和)的操作就是所谓的卷积操作,也是卷积神经网络的名字来源。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

池化

池化层的作用是去除冗余信息、对特征进行压缩、简化网络复杂度、减小计算量。 池化操作将输入矩阵某一位置相邻区域的总体统计特征作为该位置的输出,主要有平均池化 (Average Pooling)、最大池化 (Max Pooling)等。简单来说池化就是在该区域上指定一个值来代表整个区域。池化层的超参数:池化窗口和池化步长。池化操作也可以看做是一种卷积操作

比如下图,选择最大池化

激活函数层

激活函数(非线性激活函数,如果激活函数使用线性函数的话,那么它的输出还是一个线性函数。)但使用非线性激活函数可以得到非线性的输出值。常见的激活函数有Sigmoid、tanh和Relu等。一般我们使用Relu作为卷积神经网络的激活函数。

全连接层

在经过多轮卷积层和池化层的处理之后,在CNN的最后一般会由1到2个全连接层来给出最后的分类结果。经过几轮卷积层和池化层的处理之后,可以认为图像中的信息已经被抽象成了信息含量更高的特征。我们可以将卷积层和池化层看成自动图像特征提取的过程。在提取完成之后,仍然需要使用全连接层来完成分类任务

Softmax层

通过Softmax层,可以得到当前样例属于不同种类的概率分布问题。

参考:

卷积神经网络(CNN)详细介绍及其原理详解-CSDN博客

卷积神经网络超详细介绍-CSDN博客

一文精简介绍CNN神经网络_cnn的网络结构-CSDN博客

相关推荐
酌沧10 分钟前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师14 分钟前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员
星辰大海的精灵16 分钟前
使用Docker和Kubernetes部署机器学习模型
人工智能·后端·架构
victory043119 分钟前
SpiceMix enables integrative single-cell spatial modeling of cell identity 文章解读
人工智能·深度学习
新智元23 分钟前
半数清华,8 位华人 AI 天团集体投奔 Meta!奥特曼:砸钱抢人不如培养死忠
人工智能·openai
新智元25 分钟前
全球顶尖 CS 论文惊爆 AI「好评密令」!哥大等 14 所高校卷入,学术圈炸锅
人工智能·openai
l0sgAi30 分钟前
vLLM在RTX50系显卡上部署大模型-使用wsl2
linux·人工智能
DDliu31 分钟前
花半个月死磕提示词后,我发现:真正值钱的不是模板,是这套可复用的结构化思维
人工智能
腾讯云开发者31 分钟前
AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
人工智能
JoernLee31 分钟前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习