生成对抗网络GAN的扩展应用理解

:本文仅个人学习理解,如需详细内容请看原论文!

一、cycleGAN

1.整体架构:

将图片A通过生成器生成图片B,然后通过判别器判别图片B的真假;并且图片B通过另一个生成器生成A',让A和A'近似。

2.4种损失函数:

G网络、D网络、Cycle、Identity,D网络中使用了PatchGAN。

3.PatchGAN的作用:

​ 输出的是一个N × N的矩阵,需要基于感受野来计算损失;基于感受野在特征图上的预测结果,和标签(也需要设置成N x N)计算损失。

​ 每个圆圈代表一个patch。

二、starGAN v1

1.生成器:

通过输入input image、目标域(目标风格)然后输出fake image;

将fake image与原始信号再次输入到生成器G中,生成Reconstructed image,使Reconstructed image与input image 越接近越好;

将fake image再次输入到判别器D中,然后通过类别判断真假。

2.判别器:

输入real image 和 fake image,通过判别器D输出图片的真假,以及分类结果

三、starGAN v2

引入了 Mapping network 与 Style encoder

1.Generator:

加入style编码,通过Mapping network 和 Style encoder编码

2.Mapping network:

输入:随机初始化一个向量,如16维向量Z(原图像);在传入一个reference(提供风格的图像)。

输出:64维向量,经过风格转换的图像。

组成:一些全连接网络构成。

3.Style encoder:

将原始的图像X做一个编码E(X)得到一个64维的向量。

4.Discriminator:

输出多分支结果,假设有3种风格,就会输出6种结果,每种风格都会产生2种结果。

相关推荐
Deepoch6 分钟前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头41512 分钟前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊1 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪1 小时前
AI建站推荐
大数据·人工智能·python
AI猫站长1 小时前
快讯|特斯拉机器人街头“打工”卖爆米花;灵心巧手香港AI艺术节秀“艺能”,香港艺发局主席霍启刚积极评价;国产核心部件价格将“腰斩”
人工智能·机器人·具身智能·neurips·灵心巧手·脑电波·linkerhand
Godspeed Zhao2 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
昨日之日20062 小时前
SCAIL - 自然流畅的AI角色动画生成软件 照片跳舞 虚拟偶像 WebUI+ComfyUI工作流 一键整合包下载
人工智能·音视频
geneculture2 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位
我很哇塞耶2 小时前
OpenAI最新发布,企业级AI智能体的强化微调实践
人工智能·ai·大模型