生成对抗网络GAN的扩展应用理解

:本文仅个人学习理解,如需详细内容请看原论文!

一、cycleGAN

1.整体架构:

将图片A通过生成器生成图片B,然后通过判别器判别图片B的真假;并且图片B通过另一个生成器生成A',让A和A'近似。

2.4种损失函数:

G网络、D网络、Cycle、Identity,D网络中使用了PatchGAN。

3.PatchGAN的作用:

​ 输出的是一个N × N的矩阵,需要基于感受野来计算损失;基于感受野在特征图上的预测结果,和标签(也需要设置成N x N)计算损失。

​ 每个圆圈代表一个patch。

二、starGAN v1

1.生成器:

通过输入input image、目标域(目标风格)然后输出fake image;

将fake image与原始信号再次输入到生成器G中,生成Reconstructed image,使Reconstructed image与input image 越接近越好;

将fake image再次输入到判别器D中,然后通过类别判断真假。

2.判别器:

输入real image 和 fake image,通过判别器D输出图片的真假,以及分类结果

三、starGAN v2

引入了 Mapping network 与 Style encoder

1.Generator:

加入style编码,通过Mapping network 和 Style encoder编码

2.Mapping network:

输入:随机初始化一个向量,如16维向量Z(原图像);在传入一个reference(提供风格的图像)。

输出:64维向量,经过风格转换的图像。

组成:一些全连接网络构成。

3.Style encoder:

将原始的图像X做一个编码E(X)得到一个64维的向量。

4.Discriminator:

输出多分支结果,假设有3种风格,就会输出6种结果,每种风格都会产生2种结果。

相关推荐
ykjhr_3d19 分钟前
AI 导游:开启智能旅游新时代
人工智能·旅游
jndingxin35 分钟前
OpenCV CUDA模块光流计算-----实现Farneback光流算法的类cv::cuda::FarnebackOpticalFlow
人工智能·opencv·算法
marteker37 分钟前
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
人工智能
码上地球1 小时前
卷积神经网络设计指南:从理论到实践的经验总结
人工智能·深度学习·cnn
余+185381628001 小时前
短视频矩阵系统文案创作功能开发实践,定制化开发
大数据·人工智能
MYH5161 小时前
神经网络 隐藏层
人工智能·深度学习·神经网络
晊恦X.1 小时前
第三章 k近邻法
人工智能
大笨象、小笨熊2 小时前
机器学习简介
人工智能·机器学习
速易达网络2 小时前
deepseek+coze开发的智能体页面
人工智能
[shenhonglei]2 小时前
早报精选 · 科技与产业趋势观察 | 2025年6月9日
人工智能