生成对抗网络GAN的扩展应用理解

:本文仅个人学习理解,如需详细内容请看原论文!

一、cycleGAN

1.整体架构:

将图片A通过生成器生成图片B,然后通过判别器判别图片B的真假;并且图片B通过另一个生成器生成A',让A和A'近似。

2.4种损失函数:

G网络、D网络、Cycle、Identity,D网络中使用了PatchGAN。

3.PatchGAN的作用:

​ 输出的是一个N × N的矩阵,需要基于感受野来计算损失;基于感受野在特征图上的预测结果,和标签(也需要设置成N x N)计算损失。

​ 每个圆圈代表一个patch。

二、starGAN v1

1.生成器:

通过输入input image、目标域(目标风格)然后输出fake image;

将fake image与原始信号再次输入到生成器G中,生成Reconstructed image,使Reconstructed image与input image 越接近越好;

将fake image再次输入到判别器D中,然后通过类别判断真假。

2.判别器:

输入real image 和 fake image,通过判别器D输出图片的真假,以及分类结果

三、starGAN v2

引入了 Mapping network 与 Style encoder

1.Generator:

加入style编码,通过Mapping network 和 Style encoder编码

2.Mapping network:

输入:随机初始化一个向量,如16维向量Z(原图像);在传入一个reference(提供风格的图像)。

输出:64维向量,经过风格转换的图像。

组成:一些全连接网络构成。

3.Style encoder:

将原始的图像X做一个编码E(X)得到一个64维的向量。

4.Discriminator:

输出多分支结果,假设有3种风格,就会输出6种结果,每种风格都会产生2种结果。

相关推荐
硬水果糖17 分钟前
神经网络之损失函数
人工智能·深度学习·神经网络
ConardLi1 小时前
MCP + 数据库,一种比 RAG 检索效果更好的新方式!
javascript·数据库·人工智能
火车叼位1 小时前
初中生也能懂的贝叶斯定理:拆解一个改变世界的公式
人工智能·数学·算法
小白的高手之路1 小时前
torch.nn中的非线性激活介绍合集——Pytorch中的非线性激活
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
视觉语言导航1 小时前
华东师范地面机器人融合空中无人机视角的具身导航!KiteRunner:语言驱动的户外环境合作式局部-全局导航策略
人工智能·深度学习·机器人·无人机·具身智能
是娜个二叉树!1 小时前
听课笔记-nlp
人工智能·笔记·自然语言处理
galileo20161 小时前
多智能体优秀开发框架
人工智能
DUTBenjamin2 小时前
计算机视觉5——运动估计和光流估计
人工智能·计算机视觉
HuggingFace2 小时前
Open R1 项目进展第三期
人工智能