生成对抗网络GAN的扩展应用理解

:本文仅个人学习理解,如需详细内容请看原论文!

一、cycleGAN

1.整体架构:

将图片A通过生成器生成图片B,然后通过判别器判别图片B的真假;并且图片B通过另一个生成器生成A',让A和A'近似。

2.4种损失函数:

G网络、D网络、Cycle、Identity,D网络中使用了PatchGAN。

3.PatchGAN的作用:

​ 输出的是一个N × N的矩阵,需要基于感受野来计算损失;基于感受野在特征图上的预测结果,和标签(也需要设置成N x N)计算损失。

​ 每个圆圈代表一个patch。

二、starGAN v1

1.生成器:

通过输入input image、目标域(目标风格)然后输出fake image;

将fake image与原始信号再次输入到生成器G中,生成Reconstructed image,使Reconstructed image与input image 越接近越好;

将fake image再次输入到判别器D中,然后通过类别判断真假。

2.判别器:

输入real image 和 fake image,通过判别器D输出图片的真假,以及分类结果

三、starGAN v2

引入了 Mapping network 与 Style encoder

1.Generator:

加入style编码,通过Mapping network 和 Style encoder编码

2.Mapping network:

输入:随机初始化一个向量,如16维向量Z(原图像);在传入一个reference(提供风格的图像)。

输出:64维向量,经过风格转换的图像。

组成:一些全连接网络构成。

3.Style encoder:

将原始的图像X做一个编码E(X)得到一个64维的向量。

4.Discriminator:

输出多分支结果,假设有3种风格,就会输出6种结果,每种风格都会产生2种结果。

相关推荐
聆风吟º13 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee15 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º15 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys16 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567816 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子16 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能16 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448716 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile16 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57716 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert