生成对抗网络GAN的扩展应用理解

:本文仅个人学习理解,如需详细内容请看原论文!

一、cycleGAN

1.整体架构:

将图片A通过生成器生成图片B,然后通过判别器判别图片B的真假;并且图片B通过另一个生成器生成A',让A和A'近似。

2.4种损失函数:

G网络、D网络、Cycle、Identity,D网络中使用了PatchGAN。

3.PatchGAN的作用:

​ 输出的是一个N × N的矩阵,需要基于感受野来计算损失;基于感受野在特征图上的预测结果,和标签(也需要设置成N x N)计算损失。

​ 每个圆圈代表一个patch。

二、starGAN v1

1.生成器:

通过输入input image、目标域(目标风格)然后输出fake image;

将fake image与原始信号再次输入到生成器G中,生成Reconstructed image,使Reconstructed image与input image 越接近越好;

将fake image再次输入到判别器D中,然后通过类别判断真假。

2.判别器:

输入real image 和 fake image,通过判别器D输出图片的真假,以及分类结果

三、starGAN v2

引入了 Mapping network 与 Style encoder

1.Generator:

加入style编码,通过Mapping network 和 Style encoder编码

2.Mapping network:

输入:随机初始化一个向量,如16维向量Z(原图像);在传入一个reference(提供风格的图像)。

输出:64维向量,经过风格转换的图像。

组成:一些全连接网络构成。

3.Style encoder:

将原始的图像X做一个编码E(X)得到一个64维的向量。

4.Discriminator:

输出多分支结果,假设有3种风格,就会输出6种结果,每种风格都会产生2种结果。

相关推荐
千宇宙航1 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董1 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco2 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin4 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦5 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988945 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03275 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿6 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手6 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志6 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc