数据结构(图,树)

前序知识:

(1)并查集:

并查集(畅通工程)_畅通工程并查集-CSDN博客

Note:

1.find 目的找到元素的老大 (链表遍历逐层向上找)

2.merge 合并集合(实质改变集合老大,链表性质)

树:

最小生成树:

求最小路径和(Kruskal算法):

(1)再畅通工程(最小生成树)-CSDN博客(空白图)

Note: 先排序结点距离,从小到大利用并查集找结点老大,取较小序号结点作为两结点老大

复制代码
function KruskalMST(Graph):
    # 初始化化并查集(老大设为自己)

    # 边按权重从小到大排序

    从小到大利用并查集找结点老大,取较小序号结点作为两结点老大
    for each edge in Graph.edges:
        如果属于同一个集合,跳过这条边(添加这条边会形成环)。
        if ds.find_set(edge.node1) != ds.find_set(edge.node2):
            MST.append(edge)
            ds.union(edge.node1, edge.node2)
            如果最小生成树中的边数等于节点数减一,则停止添加边。
            if length(MST) == length(Graph.nodes) - 1:
                break
    return MST

(2)继续畅通工程(最小生成树+并查集)-CSDN博客(有部分边存在)

Note: 一旦路径已建好,将其长度值赋值为0,然后所有路径一致看待

复制代码
function KruskalMST(Graph):
    # 初始化化并查集(老大设为自己)

    # 输出结点距离,判断是否存在,若存在,距离赋值为0

    # 边按权重从小到大排序

    从小到大利用并查集找结点老大,取较小序号结点作为两结点老大
    for each edge in Graph.edges:
        如果属于同一个集合,跳过这条边(添加这条边会形成环)。
        if ds.find_set(edge.node1) != ds.find_set(edge.node2):
            MST.append(edge)
            ds.union(edge.node1, edge.node2)
            如果最小生成树中的边数等于节点数减一,则停止添加边。
            if length(MST) == length(Graph.nodes) - 1:
                break
    return MST

(3)问题 Q: 小希的迷宫(并查集+最小生成树)-CSDN博客(知所有边,判断是否成环,同老大)

Note: 给出相应图路径,

复制代码
function init(n):
    for i = 1 to n:
        parent[i] = i  # 每个节点的父节点初始化为自己
  
    #    判断是否同集合的数据再次出现,否则dec=0输出No
    rootX = find(x),rootY = find(y)
    if rootX != rootY:
        if rank[rootX] > rank[rootY]:
            parent[rootY] = rootX
        elif rank[rootX] < rank[rootY]:
            parent[rootX] = rootY
        else:
            dec=0

    #    判断所有结点老大是否相同,否则输出No
    for i = 1 to n:
        if dec1 ==1:
            if find(i) != i 
                unique_leader=find(i)
                dec1=0;
        else:
            if find(i) != unique_leader:
                dec=0

图:

最短路径:

(1)最短路径---Dijkstra算法及 变式题(一个人的旅行)-CSDN博客

Note: 不断运行广度优先算法找可见点,计算并更新可见点到源点的最短距离长度

复制代码
function dijkstra(Graph, source):
    dist[] = ∞ for all vertices
    prev[] = undefined for all vertices
    dist[source] = 0
    priority_queue = new MinHeap()
    priority_queue.insert(source, 0)

    while not priority_queue.isEmpty():
        u = priority_queue.extractMin()
        for each neighbor v of u:
            alt = dist[u] + weight(u, v)
            if alt < dist[v]:
                dist[v] = alt
                prev[v] = u
                priority_queue.decreaseKey(v, alt)

    return dist, prev
相关推荐
PAK向日葵4 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者7 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者7 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9368 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑9 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
闪电麦坤9510 小时前
数据结构:迭代方法(Iteration)实现树的遍历
数据结构·二叉树·
C++、Java和Python的菜鸟10 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀10 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11210 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧11 小时前
线程相关编程、线程间通信、互斥锁
linux·算法