数据结构(图,树)

前序知识:

(1)并查集:

并查集(畅通工程)_畅通工程并查集-CSDN博客

Note:

1.find 目的找到元素的老大 (链表遍历逐层向上找)

2.merge 合并集合(实质改变集合老大,链表性质)

树:

最小生成树:

求最小路径和(Kruskal算法):

(1)再畅通工程(最小生成树)-CSDN博客(空白图)

Note: 先排序结点距离,从小到大利用并查集找结点老大,取较小序号结点作为两结点老大

复制代码
function KruskalMST(Graph):
    # 初始化化并查集(老大设为自己)

    # 边按权重从小到大排序

    从小到大利用并查集找结点老大,取较小序号结点作为两结点老大
    for each edge in Graph.edges:
        如果属于同一个集合,跳过这条边(添加这条边会形成环)。
        if ds.find_set(edge.node1) != ds.find_set(edge.node2):
            MST.append(edge)
            ds.union(edge.node1, edge.node2)
            如果最小生成树中的边数等于节点数减一,则停止添加边。
            if length(MST) == length(Graph.nodes) - 1:
                break
    return MST

(2)继续畅通工程(最小生成树+并查集)-CSDN博客(有部分边存在)

Note: 一旦路径已建好,将其长度值赋值为0,然后所有路径一致看待

复制代码
function KruskalMST(Graph):
    # 初始化化并查集(老大设为自己)

    # 输出结点距离,判断是否存在,若存在,距离赋值为0

    # 边按权重从小到大排序

    从小到大利用并查集找结点老大,取较小序号结点作为两结点老大
    for each edge in Graph.edges:
        如果属于同一个集合,跳过这条边(添加这条边会形成环)。
        if ds.find_set(edge.node1) != ds.find_set(edge.node2):
            MST.append(edge)
            ds.union(edge.node1, edge.node2)
            如果最小生成树中的边数等于节点数减一,则停止添加边。
            if length(MST) == length(Graph.nodes) - 1:
                break
    return MST

(3)问题 Q: 小希的迷宫(并查集+最小生成树)-CSDN博客(知所有边,判断是否成环,同老大)

Note: 给出相应图路径,

复制代码
function init(n):
    for i = 1 to n:
        parent[i] = i  # 每个节点的父节点初始化为自己
  
    #    判断是否同集合的数据再次出现,否则dec=0输出No
    rootX = find(x),rootY = find(y)
    if rootX != rootY:
        if rank[rootX] > rank[rootY]:
            parent[rootY] = rootX
        elif rank[rootX] < rank[rootY]:
            parent[rootX] = rootY
        else:
            dec=0

    #    判断所有结点老大是否相同,否则输出No
    for i = 1 to n:
        if dec1 ==1:
            if find(i) != i 
                unique_leader=find(i)
                dec1=0;
        else:
            if find(i) != unique_leader:
                dec=0

图:

最短路径:

(1)最短路径---Dijkstra算法及 变式题(一个人的旅行)-CSDN博客

Note: 不断运行广度优先算法找可见点,计算并更新可见点到源点的最短距离长度

复制代码
function dijkstra(Graph, source):
    dist[] = ∞ for all vertices
    prev[] = undefined for all vertices
    dist[source] = 0
    priority_queue = new MinHeap()
    priority_queue.insert(source, 0)

    while not priority_queue.isEmpty():
        u = priority_queue.extractMin()
        for each neighbor v of u:
            alt = dist[u] + weight(u, v)
            if alt < dist[v]:
                dist[v] = alt
                prev[v] = u
                priority_queue.decreaseKey(v, alt)

    return dist, prev
相关推荐
java干货几秒前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
皮皮哎哟8 分钟前
数据结构:嵌入式常用排序与查找算法精讲
数据结构·算法·排序算法·二分查找·快速排序
程序员清洒17 分钟前
CANN模型剪枝:从敏感度感知到硬件稀疏加速的全链路压缩实战
算法·机器学习·剪枝
vortex531 分钟前
几种 dump hash 方式对比分析
算法·哈希算法
堕2741 小时前
java数据结构当中的《排序》(一 )
java·数据结构·排序算法
2302_813806221 小时前
【嵌入式修炼:数据结构篇】——数据结构总结
数据结构
Wei&Yan2 小时前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
团子的二进制世界2 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法
吃杠碰小鸡2 小时前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨2 小时前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#