数据结构(图,树)

前序知识:

(1)并查集:

并查集(畅通工程)_畅通工程并查集-CSDN博客

Note:

1.find 目的找到元素的老大 (链表遍历逐层向上找)

2.merge 合并集合(实质改变集合老大,链表性质)

树:

最小生成树:

求最小路径和(Kruskal算法):

(1)再畅通工程(最小生成树)-CSDN博客(空白图)

Note: 先排序结点距离,从小到大利用并查集找结点老大,取较小序号结点作为两结点老大

复制代码
function KruskalMST(Graph):
    # 初始化化并查集(老大设为自己)

    # 边按权重从小到大排序

    从小到大利用并查集找结点老大,取较小序号结点作为两结点老大
    for each edge in Graph.edges:
        如果属于同一个集合,跳过这条边(添加这条边会形成环)。
        if ds.find_set(edge.node1) != ds.find_set(edge.node2):
            MST.append(edge)
            ds.union(edge.node1, edge.node2)
            如果最小生成树中的边数等于节点数减一,则停止添加边。
            if length(MST) == length(Graph.nodes) - 1:
                break
    return MST

(2)继续畅通工程(最小生成树+并查集)-CSDN博客(有部分边存在)

Note: 一旦路径已建好,将其长度值赋值为0,然后所有路径一致看待

复制代码
function KruskalMST(Graph):
    # 初始化化并查集(老大设为自己)

    # 输出结点距离,判断是否存在,若存在,距离赋值为0

    # 边按权重从小到大排序

    从小到大利用并查集找结点老大,取较小序号结点作为两结点老大
    for each edge in Graph.edges:
        如果属于同一个集合,跳过这条边(添加这条边会形成环)。
        if ds.find_set(edge.node1) != ds.find_set(edge.node2):
            MST.append(edge)
            ds.union(edge.node1, edge.node2)
            如果最小生成树中的边数等于节点数减一,则停止添加边。
            if length(MST) == length(Graph.nodes) - 1:
                break
    return MST

(3)问题 Q: 小希的迷宫(并查集+最小生成树)-CSDN博客(知所有边,判断是否成环,同老大)

Note: 给出相应图路径,

复制代码
function init(n):
    for i = 1 to n:
        parent[i] = i  # 每个节点的父节点初始化为自己
  
    #    判断是否同集合的数据再次出现,否则dec=0输出No
    rootX = find(x),rootY = find(y)
    if rootX != rootY:
        if rank[rootX] > rank[rootY]:
            parent[rootY] = rootX
        elif rank[rootX] < rank[rootY]:
            parent[rootX] = rootY
        else:
            dec=0

    #    判断所有结点老大是否相同,否则输出No
    for i = 1 to n:
        if dec1 ==1:
            if find(i) != i 
                unique_leader=find(i)
                dec1=0;
        else:
            if find(i) != unique_leader:
                dec=0

图:

最短路径:

(1)最短路径---Dijkstra算法及 变式题(一个人的旅行)-CSDN博客

Note: 不断运行广度优先算法找可见点,计算并更新可见点到源点的最短距离长度

复制代码
function dijkstra(Graph, source):
    dist[] = ∞ for all vertices
    prev[] = undefined for all vertices
    dist[source] = 0
    priority_queue = new MinHeap()
    priority_queue.insert(source, 0)

    while not priority_queue.isEmpty():
        u = priority_queue.extractMin()
        for each neighbor v of u:
            alt = dist[u] + weight(u, v)
            if alt < dist[v]:
                dist[v] = alt
                prev[v] = u
                priority_queue.decreaseKey(v, alt)

    return dist, prev
相关推荐
superlls1 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法
田里的水稻1 小时前
C++_队列编码实例,从末端添加对象,同时把头部的对象剔除掉,中的队列长度为设置长度NUM_OBJ
java·c++·算法
纪元A梦1 小时前
贪心算法应用:保险理赔调度问题详解
算法·贪心算法
Ripple123122 小时前
数据结构:顺序表与链表
数据结构·链表
Jayden_Ruan2 小时前
C++逆向输出一个字符串(三)
开发语言·c++·算法
一个响当当的名号3 小时前
B树,B+树,B*树(无代码)
数据结构·b树
点云SLAM3 小时前
C++ 常见面试题汇总
java·开发语言·c++·算法·面试·内存管理
叙白冲冲3 小时前
哈希算法以及面试答法
算法·面试·哈希算法
YuTaoShao4 小时前
【LeetCode 每日一题】1277. 统计全为 1 的正方形子矩阵
算法·leetcode·矩阵
古译汉书5 小时前
嵌入式铁头山羊stm32-ADC实现定时器触发的注入序列的单通道转换-Day26
开发语言·数据结构·stm32·单片机·嵌入式硬件·算法