L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
OpenLoong 开源社区4 分钟前
技术视界 | 从哲学到技术:人形机器人感知导航的探索(下篇)
人工智能·机器人·开源社区·人形机器人·openloong
csssnxy17 分钟前
叁仟数智指路机器人的主要功能有哪些?
人工智能
云上艺旅34 分钟前
K8S学习之基础六十九:Rancher创建svc资源
学习·云原生·容器·kubernetes·rancher
蝎蟹居35 分钟前
GB/T 4706.1-2024 家用和类似用途电器的安全 第1部分:通用要求 与2005版差异(1)
人工智能·单片机·嵌入式硬件·物联网·安全
浊酒南街42 分钟前
TensorFlow实现逻辑回归
人工智能·tensorflow·逻辑回归
云卓SKYDROID1 小时前
无人机遥测系统工作与技术难点分析!
人工智能·无人机·科普·高科技·云卓科技
Start_Present1 小时前
Pytorch 第十三回:神经网络编码器——自动编解码器
pytorch·python·深度学习·神经网络
databook1 小时前
线性模型与多分类问题:简单高效的力量
python·机器学习·scikit-learn
Moutai码农1 小时前
大模型-提示词(Prompt)技巧
人工智能·语言模型·prompt
Moutai码农1 小时前
大模型-提示词(Prompt)最佳实践
人工智能·语言模型·prompt