L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
小程故事多_80几秒前
RAG,基于字号频率的内容切分算法,非常强
人工智能·算法·aigc
IT 行者1 分钟前
OpenClaw 浏览器自动化测试的那些坑(一):Linux Snap 版本的 Chromium 无法使用托管模式
linux·运维·服务器·人工智能
肾透侧视攻城狮5 分钟前
《掌握 tf.data API:从 Dataset 创建、map/batch/shuffle 操作到预取/缓存优化的完整实战》
人工智能·深度学习·tensorflow·tf.data api·dataset 对象·map/batch/shuff·预取/并行化/缓存机制
大模型任我行8 分钟前
百度:动态偏好选择提升LLM对齐稳定性
人工智能·语言模型·自然语言处理·论文笔记
A尘埃15 分钟前
深度学习框架:Keras
人工智能·深度学习·keras
回眸&啤酒鸭29 分钟前
【回眸】AI新鲜事(五)——2026按照自己的理想型培养自己
人工智能
2401_8480097230 分钟前
Redis零基础入门学习
数据库·redis·学习
AI周红伟30 分钟前
周红伟:智能体构建实操:OpenClaw + Agent Skills + Seedance + RAG 案例实操
大数据·人工智能·大模型·智能体
海兰30 分钟前
Elastic Stack 9.3.0 日志异常检测
人工智能
AI英德西牛仔42 分钟前
豆包图片导出
人工智能