L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
民乐团扒谱机10 分钟前
【深度横评】AI记忆功能全平台拆解:ChatGPT/Claude/Gemini/国产大模型谁真懂你?附隐私避坑指南
人工智能·chatgpt
宇木灵6 小时前
C语言基础学习-二、运算符
c语言·开发语言·学习
weixin_458872617 小时前
东华复试OJ每日3题打卡·复盘91~93
学习
gorgeous(๑>؂<๑)7 小时前
【ICLR26-金玥明-新国立】MedAgent-Pro:通过推理智能体工作流实现基于证据的多模态医疗诊断
人工智能
hqyjzsb7 小时前
企业AI人才库的搭建体系与长效运营管理方案
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·改行学it
码农小韩7 小时前
AIAgent应用开发——大模型理论基础与应用(五)
人工智能·python·提示词工程·aiagent
拔刀能留住落樱吗、7 小时前
AI 落地避坑实战(2026 最新):200 + 项目复盘,数据 + 方案 + 代码思路,少亏 50 万
人工智能
龙山云仓7 小时前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
Dcs7 小时前
花 200 美刀买“黑盒”?Claude Code 这波更新,把程序员当傻子了吧…
人工智能·ai编程·claude
sensen_kiss8 小时前
INT303 Coursework2 贷款批准预测模型(对整个大数据知识的应用)
大数据·机器学习·数据分析