L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
帮帮志4 分钟前
【AI大模型对话】流式输出和非流式输出的定义和区别
开发语言·人工智能·python·大模型·anaconda
陈奕昆4 分钟前
n8n实战营Day1课时2:核心概念拆解+天气提醒工作流实操
开发语言·人工智能·n8n
邹小邹-AI12 分钟前
未来是AI客服的天下
人工智能
冴羽35 分钟前
Nano Banana Pro 很强,但你要学会写提示词才能为所欲为
人工智能·aigc·mcp
修一呀36 分钟前
【企业级对话处理】自动估计说话人数 + 声纹聚类 + ASR 转写(FunASR + ModelScope + ClearVoice)
机器学习·数据挖掘·聚类
ATMQuant1 小时前
量化指标解码11:挤压动量 - 捕捉低波动后的爆发行情
人工智能·ai·量化交易·vnpy
Aurora-silas1 小时前
Mac 本地运行 Hugging Face 大模型完全指南:PyTorch (MPS) vs Apple MLX
人工智能·pytorch·macos
石像鬼₧魂石1 小时前
常用的安全审计工具可以用于靶机学习
学习·安全
机器不学习我也不学习1 小时前
人工智能综合项目开发14----技术文档撰写
人工智能