L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
选与握15 小时前
深度学习基本知识+tensorflow
人工智能
代码游侠15 小时前
日历的各种C语言实现方法
c语言·开发语言·学习·算法
大千AI助手15 小时前
ROUGE-SU4:文本摘要评估的跳连智慧
人工智能·机器学习·nlp·rouge·文本摘要·大千ai助手·rouge-su4
草莓熊Lotso15 小时前
unordered_map/unordered_set 使用指南:差异、性能与场景选择
java·开发语言·c++·人工智能·经验分享·python·网络协议
stormsha16 小时前
裸眼3D原理浅析AI如何生成平面裸眼3D图像以科幻战士破框而出为例
人工智能·计算机视觉·平面·3d·ai
春日见19 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
陈文锦丫21 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
小毅&Nora1 天前
【人工智能】【AI外呼】系统架构设计与实现详解
人工智能·系统架构·ai外呼
一只侯子1 天前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
jianqiang.xue1 天前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程