L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
代码AC不AC10 分钟前
【C++】异常
c++·学习·异常
Cristiano777.19 分钟前
周学习记录
学习
你也渴望鸡哥的力量么1 小时前
GeoSeg 框架解析
人工智能
唐华班竹1 小时前
PoA 如何把 CodexField 从“创作平台”推向“内容经济网络”
人工智能·web3
渡我白衣1 小时前
深入理解 OverlayFS:用分层的方式重新组织 Linux 文件系统
android·java·linux·运维·服务器·开发语言·人工智能
IT_陈寒1 小时前
Vue 3.4 正式发布:5个不可错过的性能优化与Composition API新特性
前端·人工智能·后端
极客BIM工作室2 小时前
解密VQVAE中的Codebook
人工智能
DogDaoDao2 小时前
大语言模型四大核心技术架构深度解析
人工智能·语言模型·架构·大模型·transformer·循环神经网络·对抗网络
shayudiandian2 小时前
Transformer结构完全解读:从Attention到LLM
人工智能·深度学习·transformer