L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
Keep_Trying_Go5 分钟前
论文Leveraging Unlabeled Data for Crowd Counting by Learning to Rank算法详解
人工智能·pytorch·深度学习·算法·人群计数
q***3757 分钟前
爬虫学习 01 Web Scraper的使用
前端·爬虫·学习
趣浪吧26 分钟前
AI在手机上真没用吗?
人工智能·智能手机·aigc·音视频·媒体
IT考试认证42 分钟前
华为人工智能认证 HCIA-AI Solution H13-313 题库
人工智能·华为·题库·hcia-ai·h13-313
AI technophile1 小时前
OpenCV计算机视觉实战(31)——人脸识别详解
人工智能·opencv·计算机视觉
九河云1 小时前
汽车轻量化部件智造:碳纤维成型 AI 调控与强度性能数字孪生验证实践
人工智能·汽车·数字化转型
3DVisionary1 小时前
DIC技术如何重新定义汽车板料成形测试
人工智能·汽车·材料力学性能·dic技术·汽车板料·成形极限图·非接触式测量
5***o5001 小时前
深度学习代码库
人工智能·深度学习
车端域控测试工程师1 小时前
Autosar网络管理测试用例 - TC003
c语言·开发语言·学习·汽车·测试用例·capl·canoe
2501_941664961 小时前
AI在创意产业的应用:从艺术到娱乐的数字变革
人工智能