L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
Juchecar3 分钟前
如何理解“AI token 大宗商品化”?
人工智能
文火冰糖的硅基工坊4 分钟前
[人工智能-大模型-29]:大模型应用层技术栈 - 第二层:Prompt 编排层(Prompt Orchestration)
人工智能·大模型·prompt·copilot
大模型真好玩7 分钟前
LangGraph实战项目:从零手搓DeepResearch(三)——LangGraph多智能体搭建与部署
人工智能·langchain·mcp
飞哥数智坊10 分钟前
DeepSeek-OCR:用“看图”代替“读文”,一种更像人类的上下文压缩方式
人工智能·deepseek
Python图像识别23 分钟前
73_基于深度学习的水面漂浮垃圾检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
L.fountain25 分钟前
强化学习2.2 MDP实践——Frozen lake
人工智能·强化学习
_dindong26 分钟前
牛客101:链表
数据结构·c++·笔记·学习·算法·链表
JJJJ_iii29 分钟前
【机器学习06】神经网络的实现、训练与向量化
人工智能·笔记·深度学习·神经网络·学习·机器学习·线性回归
倔强的石头10632 分钟前
AI协作天花板!CherryStudio让多模型协同像搭积木
人工智能·cpolar
IT_陈寒33 分钟前
Vite 3.0 性能优化实战:5个技巧让你的构建速度提升200% 🚀
前端·人工智能·后端