L1正则化的数学公式

L1正则化是机器学习和统计学中常用的正则化技术,用于控制模型的复杂度并防止过拟合。它们的数学表达如下:

  1. L1正则化(也称为Lasso正则化):在损失函数中添加模型参数的绝对值之和作为正则化项。其数学公式如下所示:

Loss L1 = Loss data + λ ∑ i = 1 n ∣ w i ∣ \text{Loss}{\text{L1}} = \text{Loss}{\text{data}} + \lambda \sum_{i=1}^{n} |w_i| LossL1=Lossdata+λi=1∑n∣wi∣

其中, Loss data \text{Loss}_{\text{data}} Lossdata是模型在训练数据上的损失, λ \lambda λ 是正则化参数,控制正则化的强度, w i w_i wi 是模型的参数。

L1正则化除了用在损失函数上,还有其它用处

  1. 特征选择:L1正则化的一个重要应用是特征选择,它倾向于使得模型的参数稀疏化,即将一些特征的权重归零,从而可以剔除对模型预测贡献较小的特征,提高模型的泛化能力和解释性。

  2. 稀疏性:由于L1正则化倾向于产生稀疏的参数向量,因此在某些情况下,它可以帮助减少模型的复杂度,提高模型的解释性和可解释性。

  3. 鲁棒性:L1正则化对于离群值(outliers)具有一定的鲁棒性,因为它使用了绝对值作为正则化项,而绝对值对离群值不敏感。

相关推荐
tq10867 分钟前
AI 重塑三层双链:从金字塔结构到人智协同网络
人工智能
砚边数影10 分钟前
AI开发依赖引入:DL4J / Java-ML 框架 Maven 坐标配置
java·数据库·人工智能·深度学习·机器学习·ai·maven
砚边数影12 分钟前
AI环境搭建(一):JDK17 + Maven 配置,Java开发环境标准化流程
数据库·人工智能·ai·ai编程
大模型最新论文速读13 分钟前
字节跳动 Seed: 用“分子结构”对思维建模
论文阅读·人工智能·深度学习·机器学习·自然语言处理
要加油哦~15 分钟前
AI | 论文 | Widget2Code: From Visual Widgets to UI Code via Multimodal LLMs
人工智能
向上的车轮16 分钟前
如何用AI重写已有的系统?
人工智能
2501_9421917721 分钟前
基于Mask-RCNN改进模型的肉类新鲜度自动检测与分类系统_1
人工智能·分类·数据挖掘
mumu-hn22 分钟前
浅说LLM-Agent(大模型-智能体)
人工智能·llm·agent
AI时代原住民24 分钟前
红旗法案:通过历史之镜分析AI时代的人机协同范式
人工智能
方见华Richard36 分钟前
自指宇宙学:存在如何通过自我描述而实在化V0.2
人工智能·交互·原型模式·空间计算