【大语言模型+Lora微调】10条对话微调Qwen-7B-Chat并进行推理 (聊天助手)

代码:https://github.com/QwenLM/Qwen/tree/main

国内源安装说明:https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary

通义千问:https://tongyi.aliyun.com/qianwen

一、环境搭建

下载源码

bash 复制代码
git clone https://github.com/QwenLM/Qwen.git

conda+pytorch (根据自己显卡驱动选择)

去pytorch官网 https://pytorch.org/get-started/previous-versions/

bash 复制代码
conda create -n qwenLM python=3.10 
conda activate qwenLM 
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia

其他依赖

bash 复制代码
pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed

UI相关依赖

bash 复制代码
cd Qwen
pip install -r requirements_web_demo.txt

可供选择(安不上不影响推理和训练)

bash 复制代码
git clone https://github.com/Dao-AILab/flash-attention
cd flash-attention && pip install .

二、模型下载与推理

2.1 运行 test_down.py

python 复制代码
#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen-7B-Chat')

2.2 下载完成后

~/.cache/modelscope/hub/Qwen/Qwen-7B-Chat

2.2 推理

--server-name 如果不写,只能本机打开,0.0.0.0输入ip可以。。

CUDA_VISIBLE_DEVICES=0 表示选择显卡0,多显卡才用,单点卡不用输入

-c表示的是模型的地址

--server-port 也可指定端口 ,默认是8000,可改为其他

bash 复制代码
CUDA_VISIBLE_DEVICES=0 python web_demo.py  -c ~/.cache/modelscope/hub/qwen/Qwen-7B-Chat --server-name 0.0.0.0

三、微调-训练lora (见官网)

3.1 数据集示意:test_zhj_11.json (局部非完整)

json 复制代码
[  {
    "id": "000000000",
       "conversations": [
           {
               "from": "user",
               "value": "你好"
           },
           {
               "from": "assistant",
               "value": "我是曾小蛙的助手,支持xx游戏相关问答。"
           }
        ]
    },       
   {
       "id": "000000001",
       "conversations": [
           {
               "from": "user",
               "value": "镇魂街游戏中,合击技是做什么用的?"
           },
           {
               "from": "assistant",
               "value": "合击技是由寄灵人与守护灵搭配使用的技能,可以在战斗中释放强大效果。"
           }
       ]
   },
   {
       "id": "000000002",
       "conversations": [
           {
               "from": "user",
               "value": "灵海之境"
           },
           {
               "from": "assistant",
               "value": "灵海之境是玩家养成寄灵人和守护灵,提升他们能力的系统。"
           }
       ]
   },
   {
       "id": "000000003",
       "conversations": [
           {
               "from": "user",
               "value": "共鸣神石是用来做什么的?"
           },
           {
               "from": "assistant",
               "value": "共鸣神石可以提升对应元素的寄灵人和守护灵的能力等级。"
           }
       ]
   },
   {
       "id": "000000004",
       "conversations": [
           {
               "from": "user",
               "value": "游戏中的竞技场?"
           },
           {
               "from": "assistant",
               "value": "竞技场是玩家们进行PVP战斗,争夺排名的场所。"
           }
       ]
   },
   {
       "id": "000000005",
       "conversations": [
           {
               "from": "user",
               "value": "游戏中,蓬莱宝库有什么特别之处?"
           },
           {
               "from": "assistant",
               "value": "蓬莱宝库是探索活动,玩家可以通过解决事件获取奖励,并挑战更高层的内容。"
           }
       ]
   },
   {
       "id": "000000006",
       "conversations": [
           {
               "from": "user",
               "value": "五灵宝珠"
           },
           {
               "from": "assistant",
               "value": "五灵宝珠用于提升角色的五行属性,角色品质到橙色后可使用。"
           }
       ]
   },
   {
       "id": "000000007",
       "conversations": [
           {
               "from": "user",
               "value": "千机黑刹是什么?"
           },
           {
               "from": "assistant",
               "value": "千机黑刹是游戏中的挑战副本之一。玩家需要挑战守卫和收集强化buff来提升自己的阵容实力,并挑战首领【镇狱童子】,根据造成的伤害获得排名和奖励。"
           }
       ]
   },
   {
       "id": "000000008",
       "conversations": [
           {
               "from": "user",
               "value": "星河罗盘有何作用?"
           },
           {
               "from": "assistant",
               "value": "星河罗盘是游戏中的一个资源收集系统。通过收集星辉作为资源,玩家可以提升星河罗盘等级,从而获得对应职业属性的加持,提升角色实力。"
           }
       ]
   },
   {
       "id": "000000009",
       "conversations": [
           {
               "from": "user",
               "value": "地狱道?"
           },
           {
               "from": "assistant",
               "value": "地狱道是一个任务系统,玩家完成任务可以激活特权,提升地狱道等级后可以获得更多加成,并且每日可领取与等级相应的奖励。"
           }
       ]
   },
   {
       "id": "000000010",
       "conversations": [
           {
               "from": "user",
               "value": "贪字营?"
           },
           {
               "from": "assistant",
               "value": "贪字营是游戏中的悬赏任务系统,玩家可以接受任务并派遣符合条件的寄灵人和守护灵上阵,完成任务后可以获得丰富的奖励。"
           }
       ]
   }
]

3.2 单卡 训练lora 脚本(直接放入命令端)

num_train_epochs 默认为 5

output_dir 训练后lora保存

data_path 数据集json的路径
model_name_or_path 使用绝对路径
gradient_accumulation_steps 数据少时 ,要改为1(默认为8),否则loss训练不下去

bash 复制代码
CUDA_VISIBLE_DEVICES=1 python finetune.py \
  --model_name_or_path "your_dir/modelscope/hub/Qwen/Qwen-7B-Chat" \
  --data_path "./datasets/test_zhj_11.json"\
  --bf16 True \
  --output_dir output_qwen/test1 \
  --num_train_epochs 5 \
  --per_device_train_batch_size 2 \
  --per_device_eval_batch_size 1 \
  --gradient_accumulation_steps 1 \
  --evaluation_strategy "no" \
  --save_strategy "steps" \
  --save_steps 1000 \
  --save_total_limit 10 \
  --learning_rate 3e-4 \
  --weight_decay 0.1 \
  --adam_beta2 0.95 \
  --warmup_ratio 0.01 \
  --lr_scheduler_type "cosine" \
  --logging_steps 1 \
  --report_to "none" \
  --model_max_length 512 \
  --lazy_preprocess True \
  --gradient_checkpointing \
  --use_lora

训练过程

训练后的lora模型(未融合)

3.3 加载lora (未合并 合并见官网)

官网加载示意 (部分代码)

python 复制代码
from peft import AutoPeftModelForCausalLM

model = AutoPeftModelForCausalLM.from_pretrained(
    path_to_adapter, # path to the output directory
    device_map="auto",
    trust_remote_code=True
).eval()

修改 web_demo.py 为web_demo_lora.py (代码见附录)

下面代码DEFAULT_CKPT_PATH 改为自己 主模型的绝对路径,非lora

python 复制代码
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""A simple web interactive chat demo based on gradio."""
import os
from argparse import ArgumentParser

import gradio as gr
import mdtex2html

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig


DEFAULT_CKPT_PATH = 'Qwen/Qwen-7B-Chat'
from peft import AutoPeftModelForCausalLM


def _get_args():
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")

    parser.add_argument("--share", action="store_true", default=False,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=8000,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args


def _load_model_tokenizer(args):
    tokenizer = AutoTokenizer.from_pretrained(
        args.checkpoint_path, trust_remote_code=True, resume_download=True,
    )

    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "auto"

    model = AutoPeftModelForCausalLM.from_pretrained(
         args.checkpoint_path, # path to the output directory
        device_map=device_map,
        trust_remote_code=True,
    ).eval()

    config = GenerationConfig.from_pretrained(
        DEFAULT_CKPT_PATH , trust_remote_code=True, resume_download=True,
    )

    return model, tokenizer, config


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert(message),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def _gc():
    import gc
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()


def _launch_demo(args, model, tokenizer, config):

    def predict(_query, _chatbot, _task_history):
        print(f"User: {_parse_text(_query)}")
        _chatbot.append((_parse_text(_query), ""))
        full_response = ""

        for response in model.chat_stream(tokenizer, _query, history=_task_history, generation_config=config):
            _chatbot[-1] = (_parse_text(_query), _parse_text(response))

            yield _chatbot
            full_response = _parse_text(response)

        print(f"History: {_task_history}")
        _task_history.append((_query, full_response))
        print(f"Qwen-Chat: {_parse_text(full_response)}")

    def regenerate(_chatbot, _task_history):
        if not _task_history:
            yield _chatbot
            return
        item = _task_history.pop(-1)
        _chatbot.pop(-1)
        yield from predict(item[0], _chatbot, _task_history)

    def reset_user_input():
        return gr.update(value="")

    def reset_state(_chatbot, _task_history):
        _task_history.clear()
        _chatbot.clear()
        _gc()
        return _chatbot

    with gr.Blocks() as demo:
        gr.Markdown("""\
<p align="center"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" style="height: 80px"/><p>""")
        gr.Markdown("""<center><font size=8>Qwen-Chat Bot</center>""")
        gr.Markdown(
            """\
<center><font size=3>This WebUI is based on Qwen-Chat, developed by Alibaba Cloud. \
(本WebUI基于Qwen-Chat打造,实现聊天机器人功能。)</center>""")
        gr.Markdown("""\
<center><font size=4>
Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 </a> | 
<a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>&nbsp | 
Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 </a> | 
<a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>&nbsp | 
Qwen-14B <a href="https://modelscope.cn/models/qwen/Qwen-14B/summary">🤖 </a> | 
<a href="https://huggingface.co/Qwen/Qwen-14B">🤗</a>&nbsp | 
Qwen-14B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-14B-Chat/summary">🤖 </a> | 
<a href="https://huggingface.co/Qwen/Qwen-14B-Chat">🤗</a>&nbsp | 
&nbsp<a href="https://github.com/QwenLM/Qwen">Github</a></center>""")

        chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height")
        query = gr.Textbox(lines=2, label='Input')
        task_history = gr.State([])

        with gr.Row():
            empty_btn = gr.Button("🧹 Clear History (清除历史)")
            submit_btn = gr.Button("🚀 Submit (发送)")
            regen_btn = gr.Button("🤔️ Regenerate (重试)")

        submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
        submit_btn.click(reset_user_input, [], [query])
        empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True)
        regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)

        gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")

    demo.queue().launch(
        share=args.share,
        inbrowser=args.inbrowser,
        server_port=args.server_port,
        server_name=args.server_name,
    )


def main():
    args = _get_args()

    model, tokenizer, config = _load_model_tokenizer(args)

    _launch_demo(args, model, tokenizer, config)


if __name__ == '__main__':
    main()

运行命令

python 复制代码
CUDA_VISIBLE_DEVICES=0  python web_demo_lora.py    --server-name 0.0.0.0   -c ./output_qwen/test1   --server-port 8088

结果

我是曾小蛙的小助手

文章目录

  • 一、环境搭建
  • 二、模型下载与推理
    • [2.1 运行 test_down.py](#2.1 运行 test_down.py)
    • [2.2 下载完成后](#2.2 下载完成后)
    • [2.2 推理](#2.2 推理)
  • [三、微调-训练lora (见官网)](#三、微调-训练lora (见官网))
    • [3.1 数据集示意:**test_zhj_11.json** (局部非完整)](#3.1 数据集示意:test_zhj_11.json (局部非完整))
    • [3.2 单卡 训练lora 脚本(直接放入命令端)](#3.2 单卡 训练lora 脚本(直接放入命令端))
    • [3.3 加载lora (未合并 合并见官网)](#3.3 加载lora (未合并 合并见官网))
      • [官网加载示意 (部分代码)](#官网加载示意 (部分代码))
      • [修改 web_demo.py 为web_demo_lora.py (代码见附录)](#修改 web_demo.py 为web_demo_lora.py (代码见附录))
      • 运行命令
      • 结果
相关推荐
YSGZJJ5 分钟前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞7 分钟前
COR 损失函数
人工智能·机器学习
HPC_fac130520678161 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd4 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao5 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI9 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1239 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界9 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221519 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2519 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台