李沐54_循环神经网络RNN——自学笔记

潜变量自回归模型

使用潜变量ht总结过去信息。

困惑度perplexity

1.衡量一个语言模型的好坏可以用平均交叉熵

2.历史原因NLP使用困惑度exp(Π)来衡量,是平均每次可能选项

3.无穷大是最差,1是完美

梯度裁剪

1.迭代中计算这T个时间步的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定

2.梯度裁剪可以有效预防梯度爆炸。如果梯度长度超过θ,那么拖影回长度θ

总结

1.循环神经网络的输出取决于当下输入和前一时间的隐变量

2.应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词

3.通常使用困惑度来衡量语言模型的好坏

python 复制代码
相关推荐
ChoSeitaku几秒前
线代强化NO19|矩阵的相似与相似对角化
python·线性代数·矩阵
sniper_fandc12 分钟前
Coze智能体实现人生模拟器
python·ai·agent·coze
杜子不疼.20 分钟前
光影交织:基于Rokid AI眼镜的沉浸式影视剧情互动体验开发实战
人工智能
IT_陈寒22 分钟前
Python高手都在用的5个隐藏技巧,让你的代码效率提升50%
前端·人工智能·后端
white-persist26 分钟前
【攻防世界】reverse | Reversing-x64Elf-100 详细题解 WP
c语言·开发语言·网络·python·学习·安全·php
FeiHuo5651526 分钟前
微信个人号开发中如何高效实现API二次开发
java·开发语言·python·微信
love530love28 分钟前
【保姆级教程】Windows + Podman 从零部署 Duix-Avatar 数字人项目
人工智能·windows·笔记·python·数字人·podman·duix-avatar
周杰伦_Jay43 分钟前
【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
人工智能·机器学习·架构·开源
大模型真好玩1 小时前
低代码Agent开发框架使用指南(八)—Coze 知识库详解
人工智能·agent·coze
2***57422 小时前
人工智能在智能投顾中的算法
人工智能·算法