李沐54_循环神经网络RNN——自学笔记

潜变量自回归模型

使用潜变量ht总结过去信息。

困惑度perplexity

1.衡量一个语言模型的好坏可以用平均交叉熵

2.历史原因NLP使用困惑度exp(Π)来衡量,是平均每次可能选项

3.无穷大是最差,1是完美

梯度裁剪

1.迭代中计算这T个时间步的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定

2.梯度裁剪可以有效预防梯度爆炸。如果梯度长度超过θ,那么拖影回长度θ

总结

1.循环神经网络的输出取决于当下输入和前一时间的隐变量

2.应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词

3.通常使用困惑度来衡量语言模型的好坏

python 复制代码
相关推荐
产品何同学20 分钟前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I23 分钟前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术24 分钟前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python
递归尽头是星辰41 分钟前
大模型与向量检索的融合:从核心原理到 Spring AI 落地
人工智能·大模型·向量检索·rag·spring ai·向量库
gihigo199844 分钟前
希尔伯特-黄变换(HHT)完整MATLAB实现
人工智能·算法·matlab
我什么都学不会1 小时前
Python练习作业2
开发语言·python
min1811234561 小时前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
2013092416271 小时前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao6664551 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
爱喝可乐的老王1 小时前
神经网络的基础:核心是 “搭积木 + 激活信号”
人工智能·深度学习·神经网络