李沐54_循环神经网络RNN——自学笔记

潜变量自回归模型

使用潜变量ht总结过去信息。

困惑度perplexity

1.衡量一个语言模型的好坏可以用平均交叉熵

2.历史原因NLP使用困惑度exp(Π)来衡量,是平均每次可能选项

3.无穷大是最差,1是完美

梯度裁剪

1.迭代中计算这T个时间步的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定

2.梯度裁剪可以有效预防梯度爆炸。如果梯度长度超过θ,那么拖影回长度θ

总结

1.循环神经网络的输出取决于当下输入和前一时间的隐变量

2.应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词

3.通常使用困惑度来衡量语言模型的好坏

python 复制代码
相关推荐
一叶飘零_sweeeet13 分钟前
IDEA 插件 Trae AI 全攻略
java·人工智能·intellij-idea
SEO_juper37 分钟前
AI 搜索时代:引领变革,重塑您的 SEO 战略
人工智能·搜索引擎·seo·数字营销·seo优化
shengyicanmou1 小时前
深度解码格行无缝切网引擎:40%延迟降低背后的多网智能切换架构
人工智能·物联网·智能硬件
来自天蝎座的孙孙1 小时前
洛谷P1595讲解(加强版)+错排讲解
python·算法
Hello123网站2 小时前
GLM-4-Flash:智谱AI推出的首个免费API服务,支持128K上下文
人工智能·ai工具
试剂界的爱马仕2 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
青岛佰优联创新科技有限公司2 小时前
移动板房的网络化建设
服务器·人工智能·云计算·智慧城市
双向332 小时前
私有化部署全攻略:开源模型本地化改造的性能与安全评测
人工智能
189228048612 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
AI波克布林2 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力