李沐54_循环神经网络RNN——自学笔记

潜变量自回归模型

使用潜变量ht总结过去信息。

困惑度perplexity

1.衡量一个语言模型的好坏可以用平均交叉熵

2.历史原因NLP使用困惑度exp(Π)来衡量,是平均每次可能选项

3.无穷大是最差,1是完美

梯度裁剪

1.迭代中计算这T个时间步的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定

2.梯度裁剪可以有效预防梯度爆炸。如果梯度长度超过θ,那么拖影回长度θ

总结

1.循环神经网络的输出取决于当下输入和前一时间的隐变量

2.应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词

3.通常使用困惑度来衡量语言模型的好坏

python 复制代码
相关推荐
UI设计兰亭妙微1 分钟前
人工智能大模型管理平台UI设计
人工智能
发哥来了4 分钟前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
物联网APP开发从业者5 分钟前
2026年AI智能产品开发行业十大创新解决方案
人工智能
badfl19 分钟前
VSCode Claude Code插件配置教程:使用、配置中转API、常见问题
人工智能·vscode·ai
福大大架构师每日一题32 分钟前
ComfyUI v0.11.1正式发布:新增开发者专属节点支持、API节点强化、Python 3.14兼容性更新等全方位优化!
开发语言·python
Faker66363aaa43 分钟前
指纹过滤器缺陷检测与分类 —— 基于MS-RCNN_X101-64x4d_FPN_1x_COCO模型的实现与分析_1
人工智能·目标跟踪·分类
金融小师妹1 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心1 小时前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授1 小时前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别
铁蛋AI编程实战1 小时前
OpenClaw+Kimi K2.5开源AI助手零门槛部署教程:本地私有化+远程控制+办公自动化全实操
人工智能·开源