李沐54_循环神经网络RNN——自学笔记

潜变量自回归模型

使用潜变量ht总结过去信息。

困惑度perplexity

1.衡量一个语言模型的好坏可以用平均交叉熵

2.历史原因NLP使用困惑度exp(Π)来衡量,是平均每次可能选项

3.无穷大是最差,1是完美

梯度裁剪

1.迭代中计算这T个时间步的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定

2.梯度裁剪可以有效预防梯度爆炸。如果梯度长度超过θ,那么拖影回长度θ

总结

1.循环神经网络的输出取决于当下输入和前一时间的隐变量

2.应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词

3.通常使用困惑度来衡量语言模型的好坏

python 复制代码
相关推荐
BoBoZz191 分钟前
MultipleRenderWindows 创建多个渲染窗口
python·vtk·图形渲染·图形处理
新知图书3 分钟前
FastGPT开发一个智能客服案例
人工智能·fastgpt·ai agent·智能体·大模型应用
小毅&Nora6 分钟前
【人工智能】【大模型】 从“读心术“到“智能助手“:大模型架构的演进与革命
人工智能·架构·大模型
俞凡12 分钟前
AI 智能体高可靠设计模式:预生成
人工智能
中杯可乐多加冰12 分钟前
文档解析与问答实战——三步搭建基于TextIn与Coze的智能文档Agent方案
人工智能
狂炫冰美式13 分钟前
Meta 收购 Manus:当巨头搭台时,你要做那个递钥匙的人
前端·人工智能·后端
小二·14 分钟前
AI工程化实战《八》:RAG + Agent 融合架构全解——打造能思考、会行动的企业大脑
人工智能·架构
Rabbit_QL15 分钟前
【深度学习原理】数值稳定性(一):为什么深度神经网络如此脆弱
人工智能·深度学习·dnn
core51217 分钟前
深度神经网络 (DNN):当机器学会“深思熟虑”
人工智能·深度学习·神经网络·深度神经网络
短视频矩阵源码定制18 分钟前
好用的矩阵系统机构
大数据·人工智能·矩阵