李沐54_循环神经网络RNN——自学笔记

潜变量自回归模型

使用潜变量ht总结过去信息。

困惑度perplexity

1.衡量一个语言模型的好坏可以用平均交叉熵

2.历史原因NLP使用困惑度exp(Π)来衡量,是平均每次可能选项

3.无穷大是最差,1是完美

梯度裁剪

1.迭代中计算这T个时间步的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定

2.梯度裁剪可以有效预防梯度爆炸。如果梯度长度超过θ,那么拖影回长度θ

总结

1.循环神经网络的输出取决于当下输入和前一时间的隐变量

2.应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词

3.通常使用困惑度来衡量语言模型的好坏

python 复制代码
相关推荐
如竟没有火炬5 小时前
快乐数——哈希表
数据结构·python·算法·leetcode·散列表
北京地铁1号线5 小时前
知识图谱简介
人工智能·知识图谱
币圈菜头5 小时前
视听测试版功能正式开放:符合条件的用户已可抢先体验
人工智能·web3·区块链
智算菩萨5 小时前
GPT-5.2 最新官方报告(基于 OpenAI 官网/官方文档检索整理)
人工智能·chatgpt
渡我白衣5 小时前
计算机组成原理(5):计算机的性能指标
服务器·网络·c++·人工智能·网络协议·tcp/ip·网络安全
新知图书5 小时前
智能体的自适应学习
人工智能·ai agent·智能体·大模型应用开发·大模型应用
GMICLOUD5 小时前
GMI Cloud@AI周报|GPT 5.2 重磅发布;智谱AI GLM-4.6V开源;
人工智能·gpt·业界资讯
郝学胜-神的一滴5 小时前
设计模式依赖于多态特性
java·开发语言·c++·python·程序人生·设计模式·软件工程
SoleMotive.5 小时前
bio、nio、aio的区别以及使用场景
python·算法·nio
草莓熊Lotso5 小时前
Python 基础语法完全指南:变量、类型、运算符与输入输出(零基础入门)
运维·开发语言·人工智能·经验分享·笔记·python·其他