上位机图像处理和嵌入式模块部署(树莓派4b安装opencv)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

树莓派4b上面安装的镜像应该是debian系统,本身是可以用apt-get进行软件下载的。这一点对于我们来说就非常的方便。因为,如果可以从官方的软件源下载软件,这样就不需要我们自己进行第三方编译了。毕竟第三方编译是一个吃力不讨好的事情,中间软件的依赖、编译器的选择、linux版本的选择等等,大部分的工作都是非常琐碎且没有意义的。所以,这部分我们打算直接用apt-get下载opencv进行处理使用。

1、将树莓派4b网线连到路由器当中

前面我们已经把树莓派4b配置成ip为192.168.0.97的设备,并且后面需要通过外网下载opencv,所以这个时候就需要一根网线把它连接到路由器上面。

2、安装mobaxterm软件

mobaxterm是非常好用的上位机通讯软件,本身支持serial、telnet、ssh等十几种协议。不仅如此,它还支持文件拖放、编译和图片的远程显示,这一点对我们来说十分方便。

3、安装opencv

我们安装的opencv主要是为c/c++语言准备的,所以直接输入下面这行命令即可,

复制代码
sudo apt-get install libopencv-dev

4、准备测试文件process.cpp

既然opencv已经在树莓派4b安装好了,下面就可以准备测试文件了。这里测试的代码比较简单,直接通过chatgpt去准备就可以了,

复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main() {
    // 读取图片
    Mat image = imread("input.jpg", IMREAD_COLOR);
    
    if(image.empty()) {
        cout << "无法加载图像." << endl;
        return -1;
    }

    // 将图像转换为灰度图像
    Mat gray_image;
    cvtColor(image, gray_image, COLOR_BGR2GRAY);

    // 显示原始图像和灰度图像
    imshow("Original Image", image);
    imshow("Gray Image", gray_image);
    
    waitKey(0);
    return 0;
}

5、编译

编译的话,首先通过mobaxterm和配置ssh登录到树莓派4b。用vi把上面的代码copy到process.cpp。接下来就可以用g++进行编译了。编译的命令如下,

复制代码
g++ process.cpp -o process -I /usr/include/opencv4/ -L /usr/lib/ -lopencv_core -lopencv_imgcodecs -lopencv_highgui -lopencv_imgproc

本身镜像已经自带了g++编译工具,所以如果编译没有什么问题的话,就可以生成process文件了。

6、准备测试图片

需要的图片可以直接从这个github地址获取,重命名为input.jpg就可以了,

复制代码
https://github.com/mikolalysenko/lena/blob/master/lena.png

7、执行process文件

最后一步就是执行process可执行文件了。代码中有imshow的操作,这一点mobaxterm可以帮助我们完成,也就是说处理后的效果是可以通过mobaxterm的窗口看出来的。相关处理结果可以自动通过弹出显示出来,这一点不需要我们担心。

如果我们看到上面的弹窗,那么支持就可以认为opencv已经成功地在树莓派4b上面运行起来了。这也是目前为止最重要的工作,剩下来的事情就是怎么把这个流程给它丰富和完成好了。

相关推荐
编码小哥1 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念1 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路1 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen2 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗2 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型3 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd3 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白4 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_804 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20204 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能